Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/61373
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.creatorChen, K-
dc.creatorYu, Y-
dc.creatorZhang, Z-
dc.creatorShi, SQ-
dc.date.accessioned2016-12-19T08:55:38Z-
dc.date.available2016-12-19T08:55:38Z-
dc.identifier.issn1359-6462-
dc.identifier.urihttp://hdl.handle.net/10397/61373-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.subjectAmorphous alloyen_US
dc.subjectMicrostructure evolutionen_US
dc.subjectShocken_US
dc.subjectStrength relaxationen_US
dc.titleShock-induced time-dependent strength behavior in amorphous alloys from a microscopic viewen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage62-
dc.identifier.epage66-
dc.identifier.volume120-
dc.identifier.doi10.1016/j.scriptamat.2016.04.020-
dcterms.abstractShock-induced strength behavior and the corresponding microstructural evolution have remained unclear for decades. We propose a viscous-solid model from a microscopic view implied by simulations with non-equilibrium molecular dynamics. The model describes the shocked microstructure very well and shows time-dependent strength behavior upon shock-induced yielding in amorphous alloys. For the first time, we find that the Kohlrausch-Williams-Watts equation [φ(t) = e-(t/)β] is quantitatively applicable in the modelling of time-dependent strength behavior at the non-equilibrium shockwave front. The parameters in the Kohlrausch-Williams-Watts equation are found to agree well with several experimental facts.-
dcterms.bibliographicCitationScripta materialia, 2016, v. 120, p. 62-66-
dcterms.isPartOfScripta materialia-
dcterms.issued2016-
dc.identifier.isiWOS:000376807200015-
dc.identifier.scopus2-s2.0-84964826695-
dc.identifier.eissn1872-8456-
dc.identifier.rosgroupid2015001307-
dc.description.ros2015-2016 > Academic research: refereed > Publication in refereed journal-
Appears in Collections:Journal/Magazine Article
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

4
Last Week
0
Last month
Citations as of Sep 4, 2020

WEB OF SCIENCETM
Citations

4
Last Week
0
Last month
Citations as of Oct 21, 2020

Page view(s)

116
Last Week
0
Last month
Citations as of Oct 21, 2020

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.