Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/61330
Title: Hybrid metaheuristic algorithms in geotechnical engineering
Authors: Cheng, YM 
Keywords: Back analysis
Geotechnical engineering
Hybrid optimization
Slope stability
Wave equation
Issue Date: 2016
Publisher: Springer
Source: Modeling and optimization in science and technologies, 2016, v. 7, p. 277-302 How to cite?
Journal: Modeling and optimization in science and technologies 
Abstract: The solutions of many engineering problems can be formulated as the optimized results of a functional. While many engineering problems are governed by a continuous convex optimization process, this is not the case for many geotechnical problems. Many geotechnical problems have irregular solution domains, with the objective function being nonconvex and may not be a continuous function. The presence of multiple local minima is common in many geotechnical problems, and the occurrence of local zones where there is rapid changes in the material parameters is not uncommon. The corresponding governing problems are hence usually NP-type nonconvex optimization problem, and by nature, such NP-type problems with the various constraints pose great difficulty in analysis. While the classical heuristic optimization methods may work well for some of these problems, there are also some practical cases where the classical methods may fail to perform satisfactorily. To maintain a balance between the computation time and accuracy, several hybrid metaheuristic algorithms are proposed by the author which can work well for many practical geotechnical problems. In this chapter, the author will illustrate the basic concept of hybrid metaheuristic algorithms and the applications to some difficult geotechnical problems.
URI: http://hdl.handle.net/10397/61330
ISSN: 2196-7326 (print)
2196-7334 (online)
DOI: 10.1007/978-3-319-26245-1_13
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

1
Last Week
0
Last month
Citations as of Jan 18, 2019

Page view(s)

42
Last Week
0
Last month
Citations as of Jan 14, 2019

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.