Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/60936
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorLi, Xen_US
dc.creatorQiao, Zen_US
dc.creatorZhang, Hen_US
dc.date.accessioned2016-12-19T08:54:06Z-
dc.date.available2016-12-19T08:54:06Z-
dc.identifier.issn1674-7283en_US
dc.identifier.urihttp://hdl.handle.net/10397/60936-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© Science China Press and Springer-Verlag Berlin Heidelberg 2016en_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s11425-016-5137-2en_US
dc.rightsttps://doi.org/en_US
dc.subjectAdaptive time steppingen_US
dc.subjectCahn-Hilliard equationen_US
dc.subjectConvex splittingen_US
dc.subjectEnergy stabilityen_US
dc.subjectStochastic termen_US
dc.titleAn unconditionally energy stable finite difference scheme for a stochastic Cahn-Hilliard equationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1815en_US
dc.identifier.epage1834en_US
dc.identifier.volume59en_US
dc.identifier.issue9en_US
dc.identifier.doi10.1007/s11425-016-5137-2en_US
dcterms.abstractIn this work, the MMC-TDGL equation, a stochastic Cahn-Hilliard equation, is solved numerically by using the finite difference method in combination with a convex splitting technique of the energy functional. For the non-stochastic case, we develop an unconditionally energy stable difference scheme which is proved to be uniquely solvable. For the stochastic case, by adopting the same splitting of the energy functional, we construct a similar and uniquely solvable difference scheme with the discretized stochastic term. The resulted schemes are nonlinear and solved by Newton iteration. For the long time simulation, an adaptive time stepping strategy is developed based on both first- and second-order derivatives of the energy. Numerical experiments are carried out to verify the energy stability, the efficiency of the adaptive time stepping and the effect of the stochastic term.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationScience China. Mathematics, Sept. 2016, v. 59, no. 9, p. 1815-1834en_US
dcterms.isPartOfScience China. Mathematicsen_US
dcterms.issued2016-09-
dc.identifier.isiWOS:000384569600008-
dc.identifier.scopus2-s2.0-84959329146-
dc.identifier.ros2016000260-
dc.identifier.rosgroupid2016000259-
dc.description.ros2016-2017 > Academic research: refereed > Publication in refereed journalen_US
dc.description.validate201804_a bcmaen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAMA-0555-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNSFCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6621272-
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Qiao_Unconditionally_Energy_Stable.pdfPre-Published version1.26 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

126
Last Week
0
Last month
Citations as of Mar 24, 2024

Downloads

37
Citations as of Mar 24, 2024

SCOPUSTM   
Citations

26
Last Week
1
Last month
Citations as of Mar 28, 2024

WEB OF SCIENCETM
Citations

24
Last Week
0
Last month
Citations as of Mar 28, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.