Please use this identifier to cite or link to this item:
Title: A novel analytical model of air-gap permeance in tubular linear switched reluctance actuators with hybrid flux paths
Authors: Xue, X
Cheng, K 
Bao, Y
Zhang, Z
Issue Date: 2015
Publisher: Institute of Electrical and Electronics Engineers Inc.
Source: 2015 IEEE International Magnetics Conference, INTERMAG 2015, 11-15 May 2015, 7156546 How to cite?
Abstract: Due to simple and robust configuration, and without any coils and magnets on movers, a tubular linear switched reluctance actuator (TLSRA) is a promising candidate for applications of frequently reciprocating linear motion, such as linear compressors and automotive active suspension sys-tems[1-2]. For air-gap in a TLSRA, there are the longitudinal and transverse magnetic paths due to various mover positions. Change in air-gap permeance in a TLSRA results in the thrust force, which drives the mover for linear motion. Thus, the air-gap permeance is the crucial parameter for computing the thrust force in the electromagnetic design and estimating the real-time thrust force in force control of TLSRAs. In general, the air-gap permeance at two special positions can be calculated analytically, such as the maximum and minimum air-gap permeance[3]. It is a challenging issue that an analytically model is developed to compute the air-gap permeance at arbitrary mover positions. This paper focuses on that permeance model development.
ISBN: 9781479973224
DOI: 10.1109/INTMAG.2015.7156546
Appears in Collections:Conference Paper

View full-text via PolyU eLinks SFX Query
Show full item record

Page view(s)

Last Week
Last month
Citations as of Jan 13, 2019

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.