Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/5382
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineering-
dc.creatorDai, JG-
dc.creatorGao, WY-
dc.creatorTeng, JG-
dc.date.accessioned2014-12-11T08:28:52Z-
dc.date.available2014-12-11T08:28:52Z-
dc.identifier.issn1090-0268-
dc.identifier.urihttp://hdl.handle.net/10397/5382-
dc.language.isoenen_US
dc.publisherAmerican Society of Civil Engineersen_US
dc.rights© 2012 by the American Society of Civil Engineersen_US
dc.rightsThis is the author’s version of a work that was accepted for publication in Journal of Composites for Construction. The open URL of the article: http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000337en_US
dc.subjectFiber reinforced polymeren_US
dc.subjectConcreteen_US
dc.subjectInterfaceen_US
dc.subjectBond-slip modelen_US
dc.subjectElevated temperatureen_US
dc.subjectFracture energyen_US
dc.titleBond-slip model for FRP laminates externally bonded to concrete at elevated temperatureen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationAuthor name used in this manuscript: Jian-Guo Daien_US
dc.description.otherinformationAuthor name used in this manuscript: J.G. Tengen_US
dc.identifier.spage217-
dc.identifier.epage228-
dc.identifier.volume17-
dc.identifier.issue2-
dc.identifier.doi10.1061/(ASCE)CC.1943-5614.0000337-
dcterms.abstractThis paper presents a nonlinear local bond-slip model for fiber reinforced polymer (FRP) laminates externally bonded to concrete at elevated temperature for future use in the theoretical modeling of fire resistance of FRP-strengthened concrete structures. The model is an extension of an existing two-parameter bond-slip model for FRP-to-concrete interfaces at ambient temperature. The two key parameters employed in the proposed bond-slip model, the interfacial fracture energy G[sub f] and the interfacial brittleness index B, were determined using existing shear test data of FRP-to-concrete bonded joints at elevated temperature. In the interpretation of test data, the influences of temperature-induced thermal stress and temperature-induced bond degradation are properly accounted for. As may be expected, the interfacial fracture energy G[sub f] is found to be almost constant initially and then starts to decrease when the temperature approaches the glass transition temperature of the bonding adhesive; the interfacial brittleness index B exhibits a similar trend. The proposed temperature-dependent bond-slip model is shown to closely represent the test data upon which it is based, despite the large scatter of the test data.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of composites for construction, 28 Sept. 2012, v. 17, no. 2, p. 217–228-
dcterms.isPartOfJournal of composites for construction-
dcterms.issued2012-09-28-
dc.identifier.isiWOS:000316550000006-
dc.identifier.scopus2-s2.0-84875046382-
dc.identifier.eissn1943-5614-
dc.identifier.rosgroupidr66541-
dc.description.ros2012-2013 > Academic research: refereed > Publication in refereed journal-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Dai et al._Bond-slip model at elevated temperatures.pdfPre-published version286.56 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

181
Last Week
0
Last month
Citations as of Apr 21, 2024

Downloads

709
Citations as of Apr 21, 2024

SCOPUSTM   
Citations

166
Last Week
0
Last month
2
Citations as of Apr 19, 2024

WEB OF SCIENCETM
Citations

140
Last Week
0
Last month
0
Citations as of Apr 25, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.