Please use this identifier to cite or link to this item:
Title: Heat transfer characteristics and the optimized heating distance of laminar premixed biogas-hydrogen bunsen flame impinging on a flat surface
Authors: Wei, ZL
Zhen, HS
Leung, CW 
Cheung, CS 
Huang, ZH
Issue Date: 2015
Source: International journal of hydrogen energy, 2015, v. 40, no. 45, p. 15723-15731
Abstract: An experimental study was performed to investigate the heat transfer characteristics of a laminar premixed biogas-hydrogen flame jet impinging upwards normally on a flat plate. The effects of the distance between the nozzle and the impingement plate (H = 5-30 mm), flame jet Reynolds number (Re = 600, 800, 1000) and equivalence ratio (Ø= 0.8-1.4) were examined, and an empirical correlation to predict the optimized heating distance of impinging laminar premixed flame is obtained based on the experimental data. The results show that the increased velocity of unburnt gas can effectively enhance the local heat flux as well as the total heat transfer rate through the stronger forced convection and more energy input. The enhancement in local heat flux away from the axis gives rise to a large improvement in total transfer rate, indicating that the flame at the rich condition can have a better heating performance due to the diffusive combustion. The total heat transfer rate reaches to its maximum at a certain distance which is influenced by the flame height and equivalence ratio. A nondimensional correlation is obtained to determine the optimized heating distance as a function of Pr, u/SL and ø. The correlation indicates that the optimized heating distance has a positive relationship with the unburnt gas velocity u and a negative relationship with the laminar burning velocity SL, and it would increase at either lean or rich condition with the different rising rates.
Keywords: Biogas-hydrogen fuel
Flame impingement heat transfer
Optimized heating distance
Publisher: Pergamon Press
Journal: International journal of hydrogen energy 
ISSN: 0360-3199
EISSN: 1879-3487
DOI: 10.1016/j.ijhydene.2015.06.047
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record


Last Week
Last month
Citations as of Sep 7, 2020


Last Week
Last month
Citations as of Sep 13, 2020

Page view(s)

Last Week
Last month
Citations as of Sep 13, 2020

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.