Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/43457
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorPong, TKen_US
dc.creatorSun, Hen_US
dc.creatorWang, Nen_US
dc.creatorWolkowicz, Hen_US
dc.date.accessioned2016-06-07T06:16:21Z-
dc.date.available2016-06-07T06:16:21Z-
dc.identifier.issn0926-6003en_US
dc.identifier.urihttp://hdl.handle.net/10397/43457-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© Springer Science+Business Media New York 2015en_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s10589-015-9779-8en_US
dc.subjectEigenvalue boundsen_US
dc.subjectGraph partitioningen_US
dc.subjectLarge scaleen_US
dc.subjectSemidefinite programming boundsen_US
dc.subjectVertex separatorsen_US
dc.titleEigenvalue, quadratic programming, and semidefinite programming relaxations for a cut minimization problemen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage333en_US
dc.identifier.epage364en_US
dc.identifier.volume63en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1007/s10589-015-9779-8en_US
dcterms.abstractWe consider the problem of partitioning the node set of a graph into k sets of given sizes in order to minimize the cut obtained using (removing) the kth set. If the resulting cut has value 0, then we have obtained a vertex separator. This problem is closely related to the graph partitioning problem. In fact, the model we use is the same as that for the graph partitioning problem except for a different quadratic objective function. We look at known and new bounds obtained from various relaxations for this NP-hard problem. This includes: the standard eigenvalue bound, projected eigenvalue bounds using both the adjacency matrix and the Laplacian, quadratic programming (QP) bounds based on recent successful QP bounds for the quadratic assignment problems, and semidefinite programming bounds. We include numerical tests for large and huge problems that illustrate the efficiency of the bounds in terms of strength and time.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationComputational optimization and applications, Mar. 2016, v. 63, no. 2, p. 333-364en_US
dcterms.isPartOfComputational optimization and applicationsen_US
dcterms.issued2016-03-
dc.identifier.isiWOS:000370561000002-
dc.identifier.scopus2-s2.0-84957839239-
dc.identifier.eissn1573-2894en_US
dc.identifier.rosgroupid2015000356-
dc.description.ros2015-2016 > Academic research: refereed > Publication in refereed journalen_US
dc.description.validate202206 bcvcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAMA-0588-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextPolyUen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6615391-
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Pong_Eigenvalue_Quadratic_Programming.pdfPre-Published version797.97 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

117
Last Week
1
Last month
Citations as of Apr 14, 2024

Downloads

44
Citations as of Apr 14, 2024

SCOPUSTM   
Citations

6
Last Week
0
Last month
Citations as of Apr 12, 2024

WEB OF SCIENCETM
Citations

5
Last Week
0
Last month
Citations as of Apr 18, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.