Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/3863
Title: Hierarchical fuzzy neural networks for nonlinear dynamic systems
Authors: Ai, Wu
Keywords: Neural networks (Computer science)
Fuzzy systems
Hong Kong Polytechnic University -- Dissertations
Issue Date: 2001
Publisher: The Hong Kong Polytechnic University
Abstract: In this thesis, the combination of hierarchical fuzzy logic system with neural network methodology for the adaptive control of nonlinear dynamic systems is addressed. The philosophy behind this study is that a hierarchical fuzzy neural network control system is designed to combine the advantages of the fuzzy inference and neural network methodology. Original contributions of this dissertation include that a theoretical framework of hierarchical fuzzy neural network is proposed based on the fuzzy hierarchy error approach algorithm and the effectiveness of nonlinear control using the hierarchical fuzzy neural network is investigated. Firstly, the theory of hierarchy in neural network and fuzzy logic system is introduced and the functional equivalence relation between the radial basis function (RBF) network and the fuzzy inference system is discussed, and a simplified description model of the proposed fuzzy neural network is presented. Secondly, according to the basic optimization principle of artificial neural networks, a novel neural network model for solving the quadratic programming problem is proposed. Thirdly, a hierarchical fuzzy neural control scheme is discussed. Then, a structure of the hierarchical fuzzy neural network, which is composed of an antecedent network and a consequent network, is explained. In the network learning and training phase, a concise and effective algorithm based on the fuzzy hierarchy error approach (FHEA) is formulated to update the parameters of the network. A model reference adaptive control structure incorporating the proposed fuzzy neural network is studied. Finally, stable fuzzy neural tracking control of a class of unknown nonlinear systems based on the hierarchy approach is illustrated. The adaptive fuzzy neural controller is constructed from the hierarchical fuzzy neural network with a set of fuzzy rules. The corresponding network parameters are adjusted on-line for the purpose of controlling the plant to track a given trajectory. The stability analysis of the unknown nonlinear system is discussed based on Lyapunov's principle.
Description: xii, 227 leaves : ill. ; 30 cm.
PolyU Library Call No.: [THS] LG51 .H577P EIE 2001 Ai
URI: http://hdl.handle.net/10397/3863
Rights: All rights reserved.
Appears in Collections:Thesis

Files in This Item:
File Description SizeFormat 
b15630742_link.htmFor PolyU Users 162 BHTMLView/Open
b15630742_ir.pdfFor All Users (Non-printable) 7.65 MBAdobe PDFView/Open
Show full item record

Page view(s)

476
Last Week
2
Last month
Checked on Feb 26, 2017

Download(s)

278
Checked on Feb 26, 2017

Google ScholarTM

Check



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.