Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/37614
Title: An explicit algebraic model for turbulent buoyant flows
Authors: So, RMC
Jin, LH
Gaski, TB
Keywords: Flow (Dynamics)
Turbulence
Issue Date: 2003
Source: Proceedings of the ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference, Honolulu, Hawaii, USA, July 6–10, 2003, v. 1, paper no. FEDSM2003-45347, p. 1995-2011 How to cite?
Abstract: This paper presents a derivation of an explicit algebraic stress model (EASM) and an explicit algebraic heat flux model (EAHFM) for buoyant shear flows. The models are derived using a projection methodology. The derived EASM has a four-term representation and is applicable to 2-D and 3-D flows. It is an extension of the three-term EASM for incompressible flow and the fourth term is added to account for the effect of buoyancy. The projection methodology is further extended to treat the heat flux transport equation in the derivation of an EAHFM. Again, the weak equilibrium assumption is invoked for the scaled heat flux equation. The basis vector used to represent the scaled heat flux vector is formed with the mean temperature gradient vector and 3×3 tensors, not necessarily symmetric or traceless, deduced from the shear and rotation rate tensors and the stress anisotropy tensor. An explicit algebraic model for buoyant shear flows is then formed with the derived EASM and EAHFM. From the derived EAHFM, an expression for the thermal diffusivity tensor in buoyant shear flows can be deduced. Thus, a turbulent Prandtl number for each of the three heat flux directions can be determined. These Prandtl numbers are functions of the gradient Richardson number. Alternatively, a scalar turbulent Prandtl number can be derived; its value is compared with the directional turbulent Prandtl numbers. The EASM and EAHFM are specialized to calculate 2-D homogeneous buoyant shear flows and the results are compared with direct numerical simulation (DNS) data and other model predictions. Good agreement with DNS data and other model predictions is obtained.
URI: http://hdl.handle.net/10397/37614
ISBN: 0-7918-3697-5
0-7918-3673-8 (E-ISBN)
DOI: 10.1115/FEDSM2003-45347
Appears in Collections:Conference Paper

Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page view(s)

20
Last Week
1
Last month
Checked on Aug 13, 2017

Google ScholarTM

Check

Altmetric



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.