Please use this identifier to cite or link to this item:
Title: Vibration analysis and control of a rotating flexible arm with ACLD treatment
Authors: Fung, EHK
Yau, DTW
Keywords: Active damping
Vibration analysis
Issue Date: 2002
Source: Proceedings of the ASME 2002 International Mechanical Engineering Congress and Exposition, Adaptive Structures and Materials Systems, New Orleans, Louisiana, USA, November 17–22, 2002, paper no. IMECE2002-33981, p. 133-141 How to cite?
Abstract: In this paper, the vibration behavior and control of a clamped-free rotating flexible cantilever arm with fully covered Active Constrained Layer Damping (ACLD) treatment is investigated. The arm is rotating in a horizontal plane in which the gravitational effect and rotary inertia are neglected. The stress-strain relationship for the viscoelastic material (VEM) is described by a complex shear modulus while the shear deformations in the two piezoelectric layers are neglected. Hamilton’s principle in conjunction with finite element method (FEM) is used to derive the nonlinear coupled differential equations of motion and the associated boundary conditions that describe the rigid hub angle rotation, the arm transverse displacement and the axial deformations of the three-layer composite. This refined model takes into account the effects of centrifugal stiffening due to the rotation of the beam and the potential energies of the VEM due to extension and bending. Active controllers are designed with PD for the piezo-sensor and actuator. The vibration frequencies and damping factors of the closed-loop beam/ACLD system are obtained after solving the characteristic complex eigenvalue problem numerically. The effects of different rotating speed, thickness ratio and loss factor of the VEM as well as different controller gain on the damped frequency and damping ratio are presented. The results of this study will be useful in the design of adaptive and smart structures for vibration suppression and control in rotating structures such as rotorcraft blades or robotic arms.
ISBN: 0-7918-3625-8
0-7918-1691-5 (E-ISBN)
0-7918-1692-3 (E-ISBN)
0-7918-1693-1 (E-ISBN)
DOI: 10.1115/IMECE2002-33981
Appears in Collections:Conference Paper

View full-text via PolyU eLinks SFX Query
Show full item record


Last Week
Last month
Citations as of Jul 10, 2018

Page view(s)

Last Week
Last month
Citations as of Jul 16, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.