Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/36518
Title: Optimal design of a solar water heating system for multiple purposes in low-energy buildings
Authors: Yan, C
Wang, S 
Ma, Z
Issue Date: 2013
Source: 12th International Conference on Sustainable Energy Technologies, Hong Kong, 26-29 August 2013 How to cite?
Abstract: This paper presents a systematic methodology for optimizing the key design parameters of a solar water heating (SWH) system with multiple heating purposes in low energy buildings. The methodology is achieved through two steps. In the first step, a simplified energy model of the SWH system is developed and used to estimate system dynamic characteristics and annual energy performance, which is implemented in a spreadsheet. The behavior of the system with different collector areas and storage volumes can be determined realistically through matching multiple heating loads with the solar heat gains. In the second step, the law of diminishing marginal utility is employed to optimize the sizes of the system in order to maximize the life cycle net energy saving. The law describes that the marginal energy saving of the system decreases with the increase of the system size. Therefore, the optimum values of the system size can be determined in an easy-to-understand way, i.e.: the optimization objective (the maximal net energy saving of a SWH system) is achieved when the marginal operating energy saving equals to the marginal embodied energy. A case study on the application of the proposed method in a low-energy building is presented as well.
URI: http://hdl.handle.net/10397/36518
Appears in Collections:Conference Paper

Show full item record

Page view(s)

25
Last Week
1
Last month
Checked on Aug 13, 2017

Google ScholarTM

Check



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.