Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/36099
Title: A "Pseudo-excitation" approach for structural damage identification : from "Strong" to "Weak" modality
Authors: Xu, H
Su, ZQ 
Cheng, L 
Guyader, JL
Issue Date: 2015
Publisher: Academic Press
Source: Journal of sound and vibration, 2015, v. 337, p. 181-198 How to cite?
Journal: Journal of sound and vibration 
Abstract: A damage characterization framework based on the "pseudo-excitation" (PE) approach has recently been established, aimed at quantitatively identifying damage in beam-, plate-, and shell-like structural components. However, it is envisaged that the effectiveness of the PE approach can be restricted in practical implementation, due to the involvement of high order derivatives of structural dynamic deflections, in which measurement noise and uncertainties can overwhelm the damage associated signal features upon mathematical differentiation. In this study, the PE approach was revamped by introducing the weighted integration, whereby the prerequisite of satisfying the local equilibrium conditions was relaxed from "point-by-point" to "region-by-region". The revamped modality was thus colloquially referred to as "weak formulation" of the PE approach, as opposed to its original version which is contrastively termed as "strong formulation". By properly configuring a weight function, noise immunity of the PE approach was enhanced, giving rise to improved detection accuracy and precision even under noisy measurement conditions. Furthermore, the 'weak formulation' was extended to a series of coherent variants through partial integration, rendering a multitude of detection strategies by selecting measurement parameters and configurations. This endowed the PE approach with flexibility in experimental manipulability, so as to accommodate various detection requirements. As an application of the "weak formulation", a continuous gauss smoothing (CGS)-based detection scheme was developed, and validated by localizing multiple cracks in a beam structure, showing fairly improved noise tolerance.
URI: http://hdl.handle.net/10397/36099
ISSN: 0022-460X
EISSN: 1095-8568
DOI: 10.1016/j.jsv.2014.10.035
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

3
Last Week
0
Last month
Citations as of Aug 17, 2017

WEB OF SCIENCETM
Citations

4
Last Week
0
Last month
Citations as of Jul 28, 2017

Page view(s)

38
Last Week
1
Last month
Checked on Aug 13, 2017

Google ScholarTM

Check

Altmetric



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.