Please use this identifier to cite or link to this item:
Title: Comparative study of the thermal and power performances of a semi-transparent photovoltaic facade under different ventilation modes
Authors: Peng, JQ
Lu, L 
Yang, HX 
Ma, T
Keywords: Building-integrated photovoltaic
Double-skin facade
Solar heat gain coefficient
Power performance
Thermal performance
Issue Date: 2015
Publisher: Pergamon Press
Source: Applied energy, 2015, v. 138, p. 572-583 How to cite?
Journal: Applied energy 
Abstract: This paper studied the thermal and power performances of a ventilated photovoltaic facade under different ventilation modes, and appropriate operation strategies for different weather conditions were proposed accordingly to maximize its energy conversion efficiency. This ventilated PV double-skin facade (PV-DSF) consists of an outside layer of semi-transparent amorphous silicon (a-Si) PV laminate, an inward-openable window and a 400 mm airflow cavity. Before installation, the electrical characteristics under standard testing conditions (STC) and the temperature coefficients of the semi-transparent PV module were tested and determined in the laboratory. Field measurements were carried out to investigate the impact of different ventilation modes, namely, ventilated, buoyancy-driven ventilated and non-ventilated, on the thermal and power performances of this PV-DSF. The results show that the ventilated PV-DSF provides the lowest average solar heat gain coefficient (SHGC) and the non-ventilated PV-DSF provides the best thermal insulation performance. In terms of power performance, the energy output of the ventilated PV-DSF is greater than those of the buoyancy-driven ventilated and non-ventilated PV-DSFs by 1.9% and 3%, respectively, due to its much lower operating temperature. Based on the experimental results, a conclusion was drawn that the ventilation design can not only reduce the heat gain of PV-DSF but also improve the energy conversion efficiency of PV modules by bringing down their operating temperature. In addition, an optimum operation strategy is recommended for this kind of PV-DSF to maximize its overall energy efficiency under different weather conditions.
ISSN: 0306-2619
EISSN: 1872-9118
DOI: 10.1016/j.apenergy.2014.10.003
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record


Last Week
Last month
Citations as of Aug 12, 2018


Last Week
Last month
Citations as of Aug 9, 2018

Page view(s)

Last Week
Last month
Citations as of Aug 13, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.