Please use this identifier to cite or link to this item:
Title: Transductive domain adaptive learning for epileptic electroencephalogram recognition
Authors: Yang, C
Deng, Z
Choi, KS 
Jiang, Y
Wang, S
Keywords: Electroencephalogram
Epilepsy detection
Kernel principal component analysis
Short time Fourier transform
Transfer learning
Wavelet packet decomposition
Issue Date: 2014
Publisher: Elsevier
Source: Artificial intelligence in medicine, 2014, v. 62, no. 3, p. 165-177 How to cite?
Journal: Artificial intelligence in medicine 
Abstract: Objective: Intelligent recognition of electroencephalogram (EEG) signals is an important means for epilepsy detection. Almost all conventional intelligent recognition methods assume that the training and testing data of EEG signals have identical distribution. However, this assumption may indeed be invalid for practical applications due to differences in distributions between the training and testing data, making the conventional epilepsy detection algorithms not feasible under such situations. In order to overcome this problem, we proposed a transfer-learning-based intelligent recognition method for epilepsy detection.
Methods: We used the large-margin-projected transductive support vector machine method (LMPROJ) to learn the useful knowledge between the training domain and testing domain by calculating the maximal mean discrepancy. The method can effectively learn a model for the testing data with training data of different distributions, thereby relaxing the constraint that the data distribution in the training and testing samples should be identical.
Results: The experimental validation is performed over six datasets of electroencephalogram signals with three feature extraction methods. The proposed LMPROJ-based transfer learning method was compared with five conventional classification methods. For the datasets with identical distribution, the performance of these six classification methods was comparable. They all could achieve an accuracy of 90%. However, the LMPROJ method obviously outperformed the five conventional methods for experimental datasets with different distribution between the training and test data. Regardless of the feature extraction method applied, the mean classification accuracy of the proposed method is above 93%, which is greater than that of the other five methods with statistical significance.
Conclusion: The proposed transfer-learning-based method has better classification accuracy and adaptability than the conventional methods in classifying EEG signals for epilepsy detection.
ISSN: 0933-3657
DOI: 10.1016/j.artmed.2014.10.002
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record


Last Week
Last month
Citations as of Aug 12, 2018


Last Week
Last month
Citations as of Aug 18, 2018

Page view(s)

Last Week
Last month
Citations as of Aug 20, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.