Please use this identifier to cite or link to this item:
Title: High temperature electrolysis for hydrogen or syngas production from nuclear or renewable energy
Authors: Shi, Y
Luo, Y
Li, W
Ni, M 
Cai, N
Issue Date: 2015
Publisher: John Wiley & Sons, Inc.
Source: In J Yan (Ed.), Handbook of clean energy systems, p. 1279-1297. Chichester: John Wiley & Sons, Inc., 2015 How to cite?
Abstract: High temperature electrolysis using solid oxide electrolysis cell (SOEC) is a promising method for converting electrical energy into chemical energy. The high temperature electrolysis is advantageous compared with low temperature electrolysis owing to its high electricity-to-hydrogen efficiency, fast reaction rate, and relatively low cost. The working principles and thermodynamics of SOEC for H2O electrolysis and H2O/CO2 co-electrolysis are described. The typical materials used for SOEC are reviewed and technical challenges for SOEC durability are discussed. To further decrease the electrical energy consumption, fuel-assisted SOEC is proposed and demonstrated to be feasible for syngas production at very low electrical energy consumption or even power generation. The planar cell and tubular cells are identified as promising designs for commercial SOEC applications. As SOEC requires both electrical energy and thermal energy input, the feasibility of integrating SOEC with nuclear power plant or renewable power plant for clean fuel production is discussed. Mathematical models at different levels contribute to understand the complex transport and reaction phenomena in SOECs and help optimize the SOEC systems. In the end, the challenges of SOEC and future developments are discussed. With further technological development, the SOEC could play an important role in future fuel processing, energy storage, and stabilizing the fluctuating renewable energy.
ISBN: 1118991974 (electronic bk.)
9781118991978 (electronic bk.)
1118388585 (print)
9781118388587 (print)
DOI: 10.1002/9781118991978.hces146
Appears in Collections:Book Chapter

View full-text via PolyU eLinks SFX Query
Show full item record

Page view(s)

Last Week
Last month
Citations as of Aug 13, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.