Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/34835
Title: Dynamic analysis of large-diameter sagged cables taking into account flexural rigidity
Authors: Ni, YQ 
Ko, JM 
Zheng, G
Issue Date: 2002
Publisher: Academic Press
Source: Journal of sound and vibration, 2002, v. 257, no. 2, p. 301-319 How to cite?
Journal: Journal of sound and vibration 
Abstract: For the purpose of developing a vibration-based tension force evaluation procedure for bridge cables using measured multimode frequencies, an investigation on accurate finite element modelling of large-diameter sagged cables taking into account flexural rigidity and sag extensibility is carried out in this paper. A three-node curved isoparametric finite element is formulated for dynamic analysis of bridge stay cables by regarding the cable as a combination of an “ideal cable element” and a fictitious curved beam element in the variational sense. With the developed finite element formulation, parametric studies are conducted to evaluate the relationship between the modal properties and cable parameters lying in a wide range covering most of the cables in existing cable-supported bridges, and the effect of cable bending stiffness and sag on the natural frequencies. A case study is eventually provided to compare the measured natural frequencies of main cables of the Tsing Ma Bridge and the computed frequencies with and without considering cable bending stiffness. The results show that ignoring bending stiffness gives rise to unacceptable errors in predicting higher order natural frequencies of the cables, and the proposed finite element formulation provides an accurate baseline model for cable tension identification from measured multimode frequencies.
URI: http://hdl.handle.net/10397/34835
ISSN: 0022-460X
EISSN: 1095-8568
DOI: 10.1006/jsvi.2002.5060
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

73
Citations as of Sep 16, 2017

WEB OF SCIENCETM
Citations

57
Last Week
1
Last month
Citations as of Sep 16, 2017

Page view(s)

31
Last Week
0
Last month
Checked on Sep 17, 2017

Google ScholarTM

Check

Altmetric



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.