Please use this identifier to cite or link to this item:
Title: Some theoretical aspects of generalised quadrature methods
Authors: Evans, GA
Chung, KC
Issue Date: 2003
Publisher: Elsevier
Source: Journal of complexity, 2003, v. 19, no. 3, p. 272-285 How to cite?
Journal: Journal of complexity
Abstract: Generalised quadrature methods rely on generating quadrature rules for given irregular oscillatory weight functions w(x) commonly belonging to the class Cn[a,b], for some usually small n. If these weight functions are known to satisfy Lw=0 for a differential operator L, then Lagrange's identity
can be used to generate a quadrature rule by forcing exactness for a set of basis functions.
Theorems which give conditions under which the computed quadrature rules will yield results correct to a required precision (usually that of the machine being employed) underpin the practical rule, and finite range integrals with weights such as sin(q(x)) and Jn(q(x)) have been successfully integrated, for q(x)∈C2[a,b]. Doubly oscillatory weights also become feasible with weights such as Jn(q1(x))Jm(q2(x)).
More recent work has considered multiple quadratures and the special problems which arise with the commonly occurring infinite range integrations. In the latter case, the direct approach results in violations of the conditions of the underlying theorem and requires some modification for success.
This approach has enabled several diverse practical problems to be attempted including integrals from financial market predictions, from chemical reactor analysis, from coherent optical imaging and from wave analysis on sloping beaches.
ISSN: 0885-064X
DOI: 10.1016/S0885-064X(03)00004-9
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record


Last Week
Last month
Citations as of Feb 18, 2017

Page view(s)

Last Week
Last month
Checked on Feb 19, 2017

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.