Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/33512
Title: A comparative study of the impact response of 3D textile composites and aluminum plates
Authors: Hu, H 
Sun, B
Sun, H
Gu, B
Keywords: 3D textile composite
Aluminum
Energy absorption
Impact responses
Issue Date: 2010
Publisher: Sage Publications Ltd
Source: Journal of composite materials, 2010, v. 44, no. 5, p. 593-619 How to cite?
Journal: Journal of Composite Materials 
Abstract: Impact damage of textile composite and aluminum are the most common phenomenon in aircrafts and high-speed vehicles as impact loadings often occur. This article presents a comparative study of the impact responses of two kinds of 3D textile composites (named as 3D spacer weft-knitted composite and 3D orthogonal woven composite) and aluminum circular plates tested with a modified split Hopkinson pressure bar apparatus. Finite element analyses of the impact behavior of the composites and aluminum were also presented to uncover the impact damage mechanisms. Furthermore, the quasi-static indentation tests were carried out for comparing the different damage modes between quasi-static and impact loading. The 3D textile composites have resin crack and fiber breakage under quasi-static indentation tests while only elasto-plastic deformation has been found in aluminum. The energy absorption of the 3D textile composite is greater than aluminum. While under impact loading, the 3D textile composites absorb lower impact energy than aluminum because the lower impact damages were found in the composite circular plate. ore importantly, no impact delamination was found in both of the 3D textile composites. This manifestation of the 3D textile composites is tougher than aluminum in impact loading and more suitable for aircrafts and high-speed vehicles design.
URI: http://hdl.handle.net/10397/33512
DOI: 10.1177/0021998309347577
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

7
Last Week
0
Last month
0
Citations as of Aug 17, 2017

WEB OF SCIENCETM
Citations

6
Last Week
0
Last month
0
Citations as of Aug 12, 2017

Page view(s)

42
Last Week
2
Last month
Checked on Aug 13, 2017

Google ScholarTM

Check

Altmetric



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.