Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/32563
Title: A graph-based approach to the retrieval of volumetric PET-CT lung images
Authors: Kumar, A
Kim, J
Wen, L
Feng, D
Keywords: Cancer
Computerised tomography
Feature extraction
Image retrieval
Medical image processing
Positron emission tomography
Tumours
Issue Date: 2012
Publisher: IEEE
Source: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), August 28 2012-September 1 2012, San Diego, CA, p. 5408-5411 How to cite?
Abstract: Combined positron emission tomography and computed tomography (PET-CT) scans have become a critical tool for the diagnosis, localisation, and staging of most cancers. This has led to a rapid expansion in the volume of PET-CT data that is archived in clinical environments. The ability to search these vast imaging collections has potential clinical applications in evidence-based diagnosis, physician training, and biomedical research that may lead to the discovery of new knowledge. Content-based image retrieval (CBIR) is an image search technique that complements conventional text-based retrieval by the use of image features as search criteria. Graph-based CBIR approaches have been found to be exemplary methods for medical CBIR as they provide the ability to consider disease localisation during the similarity measurement. However, the majority of graph-based CBIR studies have been based on 2D key slice approaches and did not exploit the rich volumetric data that is inherent to modern medical images, such as multi-modal PET-CT. In this paper, we present a graph-based CBIR method that exploits 3D spatial features extracted from volumetric regions of interest (ROIs). We index these features as attributes of a graph representation and use a graph-edit distance to measure the similarity of PET-CT images based on the spatial arrangement of tumours and organs in a 3D space. Our study aims to explore the capability of these graphs in 3D PET-CT CBIR. We show that our method achieves promising precision when retrieving clinical PET-CT images of patients with lung tumours.
URI: http://hdl.handle.net/10397/32563
ISBN: 978-1-4244-4119-8
978-1-4577-1787-1 (E-ISBN)
ISSN: 1557-170X
DOI: 10.1109/EMBC.2012.6347217
Appears in Collections:Conference Paper

Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

7
Citations as of Oct 16, 2017

Page view(s)

42
Last Week
0
Last month
Checked on Oct 15, 2017

Google ScholarTM

Check

Altmetric



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.