Please use this identifier to cite or link to this item:
Title: An evolutionary approach to pattern-based time series segmentation
Authors: Chung, FL 
Fu, TC
Ng, V 
Luk, RWP 
Issue Date: 2004
Publisher: Institute of Electrical and Electronics Engineers
Source: IEEE transactions on evolutionary computation, 2004, v. 8, no. 5, p. 471-489 How to cite?
Journal: IEEE transactions on evolutionary computation 
Abstract: Time series data, due to their numerical and continuous nature, are difficult to process, analyze, and mine. However, these tasks become easier when the data can be transformed into meaningful symbols. Most recent works on time series only address how to identify a given pattern from a time series and do not consider the problem of identifying a suitable set of time points for segmenting the time series in accordance with a given set of pattern templates (e.g., a set of technical patterns for stock analysis). However, the use of fixed-length segmentation is an oversimplified approach to this problem; hence, a dynamic approach (with high controllability) is preferable so that the time series can be segmented flexibly and effectively according to the needs of the users and the applications. In view of the fact that this segmentation problem is an optimization problem and evolutionary computation is an appropriate tool to solve it, we propose an evolutionary time series segmentation algorithm. This approach allows a sizeable set of pattern templates to be generated for mining or query. In addition, defining similarity between time series (or time series segments) is of fundamental importance in fitness computation. By identifying the perceptually important points directly from the time domain, time series segments and templates of different lengths can be compared and intuitive pattern matching can be carried out in an effective and efficient manner. Encouraging experimental results are reported from tests that segment both artificial time series generated from the combinations of pattern templates and the time series of selected Hong Kong stocks.
ISSN: 1089-778X (print)
1941-0026 (online)
DOI: 10.1109/TEVC.2004.832863
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record


Last Week
Last month
Citations as of May 20, 2020


Last Week
Last month
Citations as of May 21, 2020

Page view(s)

Last Week
Last month
Citations as of May 24, 2020

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.