Please use this identifier to cite or link to this item:
Title: A study of fabric anisotropy
Authors: Lo, Wing-man Winnie
Keywords: Textile fabrics -- Mechanical properties
Hong Kong Polytechnic University -- Dissertations
Issue Date: 2001
Publisher: The Hong Kong Polytechnic University
Abstract: This thesis describes the investigation of fabric mechanical properties, such as bending, tensile, shear and drape, of apparel and industrial woven fabrics in various directions. Mathematical models were established to predict the anisotropy of these fabric mechanical properties. Wide ranges of woven fabrics, including apparel and industrial woven fabrics were examined by comparing theoretical results with the experimental data and the results presented in the form of polar diagrams. In their investigations into the characteristics of fabric bending properties, many researchers have studied the anisotropy of bending rigidity, but none of these examined the topic of anisotropy in bending hysteresis. In this research, existing models for predicting the fabric bending rigidity were applied to bending hysteresis in various directions. All existing models for the prediction of apparel fabrics are applied to that of industrial fabrics. The results indicated that Cooper's model was the most reliable in predicting the anisotropy of bending hysteresis in different types of woven fabrics. Anisotropic models for the tensile properties, which were measured using KES-F apparatus, namely Tensile Work (WT), Tensile Elongation (EMT), Tensile Linearity (LT) and Tensile Resilience (RT), were derived. Good agreement was found between all proposed models and experimental results of apparel and industrial woven fabrics. The shapes of polar diagrams of these tensile properties can be governed by their values in the warp, weft and ±45° directions. Shear behaviour of woven fabrics is one of the most important characteristics contributing to the performance and appearance of fabrics. Anisotropy of shear properties of apparel and industrial woven fabrics was determined by a model. According to the existing literature, a strong linear relationship exists between shear rigidity (G) and shear hysteresis at two angles (2HG and 2HG5). The model for the anisotropy of fabric shear rigidity was applied to shear hysteresis. In this research, the anisotropy of fabric shear properties was accurately predicted from the proposed model. In addition, the relationships between the anisotropy of bending and tensile and shear properties were investigated. In this study, fabric drape was investigated in two aspects. (1) The relationship between drape coefficient (DC%) and the average values of bending, tensile and shear properties of apparel woven fabrics in the warp, weft and ±45° directions. A higher coefficient of determination, R², was found by introducing the third direction ±45° than that of the mean values from the warp and weft directions only. (2) Modelling of fabric drape profile (DP) using polar co-ordinate fitting technique from MATLAB software package was also conducted. The drape coefficient (DC%), drape profile (DP), the locations and the numbers of nodes were calculated and predicted.
Description: xxii, 261, [38] leaves : ill. (some col.) ; 30 cm.
PolyU Library Call No.: [THS] LG51 .H577P ITC 2001 Lo
Rights: All rights reserved.
Appears in Collections:Thesis

Files in This Item:
File Description SizeFormat 
b15995665_link.htmFor PolyU Users 162 BHTMLView/Open
b15995665_ir.pdfFor All Users (Non-printable) 16.94 MBAdobe PDFView/Open
Show full item record
PIRA download icon_1.1View/Download Contents

Page view(s)

Last Week
Last month
Citations as of Sep 18, 2018


Citations as of Sep 18, 2018

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.