Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/31249
Title: On mobile sensor assisted field coverage
Authors: Wang, D 
Liu, J
Zhang, Q
Issue Date: 2013
Publisher: Association for Computing Machinary
Source: ACM transactions on sensor networks, 2013, v. 9, no. 2, 22 How to cite?
Journal: ACM transactions on sensor networks 
Abstract: Providing field coverage is a key task in many sensor network applications. With unevenly distributed static sensors, quality coverage with acceptable network lifetime is often difficult to achieve. Fortunately, recent advances on embedded and robotic systems make mobile sensors possible, and we suggest that a small set of mobile sensors can be leveraged toward a cost-effective solution for field coverage. There are, however, a series of fundamental questions to be answered in such a hybrid network of static and mobile sensors: (1) Given the expected coverage quality and system lifetime, how many mobile sensors should be deployed? (2) What are the necessary coverage contributions from each type of sensors? (3) What working and moving patterns should the sensors adopt to achieve the desired coverage contributions? In this article, we offer an analytical study on these problems, and the results lead to a practical system design. Specifically, we present an optimal algorithm for calculating the contributions from different types of sensors, which fully exploits the potentials of the mobile sensors and maximizes the network lifetime. We then present a random walk model for the mobile sensors. The model is distributed with very low control overhead. Its parameters can be fine-tuned to match the moving capability of different mobile sensors and the demands from a broad spectrum of applications. A node collaboration scheme is then introduced to further enhance the system performance. We demonstrate through analysis and simulation that, in our mobile assisted design, a small set of mobile sensors can effectively address the uneven distribution of the static sensors and significantly improve the coverage quality.
URI: http://hdl.handle.net/10397/31249
ISSN: 1550-4859
EISSN: 1550-4867
DOI: 10.1145/2422966.2422979
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

3
Last Week
0
Last month
0
Citations as of Aug 21, 2017

WEB OF SCIENCETM
Citations

1
Last Week
0
Last month
0
Citations as of Aug 20, 2017

Page view(s)

26
Last Week
0
Last month
Checked on Aug 20, 2017

Google ScholarTM

Check

Altmetric



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.