Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/30592
Title: PAM/graphene/Ag ternary hydrogel : synthesis, characterization and catalytic application
Authors: Hu, H
Xin, JH 
Hu, H 
Issue Date: 2014
Publisher: Royal Society of Chemistry
Source: Journal of materials chemistry A, 2014, v. 2, no. 29, p. 11319-11333 How to cite?
Journal: Journal of Materials Chemistry A 
Abstract: In this work, a ternary polyacrylamide-based composite hydrogel with functionalized graphene and silver nanoparticles was fabricated by a facile, fast and inexpensive water-based approach. The structures and catalytic properties of the prepared hydrogels with different compositions were investigated in depth. Silver ions were demonstrated to have a catalytic effect on the polymer gelation reaction, which could thereby be dramatically accelerated. In addition, the low-temperature thermally functionalized graphene with a portion of oxygen functionalities and structural defects was found to play a key role in the formation of a high-performance composite hydrogel by its superior catalyst-carrying capacity and electron-transferring ability. The binary composite hydrogel without the functionalized graphene showed a much lower catalytic activity as compared to the ternary counterparts, and the catalytic performance of the ternary composite hydrogel could be further enhanced by loading a higher amount of the functionalized graphene. A new cross-linking network was evidenced to be formed after incorporation of the functionalized graphene, which could enable silver nanoparticles to be highly stabilized in the double cross-linking network matrix and thus led to the excellent reusability of the ternary composite hydrogel for several runs of catalytic reduction of different kinds of catalysants. The hydrogel catalyst could be handled much more conveniently for re-usage in different runs owing to its monolithic structure as compared to the conventional powdery catalysts. Moreover, the synergistic effects of the porous polymer network with adsorption capacity, functionalized graphene sheets having huge surface area for supporting a large number of silver nanoparticles and exceptional electron-transferring ability, and catalytically active silver nanoparticles were well demonstrated, along with a deep insight into the mechanism for the extraordinary catalytic performance of the ternary composite hydrogel.
URI: http://hdl.handle.net/10397/30592
ISSN: 2050-7488
DOI: 10.1039/c4ta01620c
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

23
Last Week
0
Last month
0
Citations as of Mar 21, 2017

WEB OF SCIENCETM
Citations

18
Last Week
0
Last month
1
Citations as of Mar 23, 2017

Page view(s)

21
Last Week
0
Last month
Checked on Mar 26, 2017

Google ScholarTM

Check

Altmetric



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.