Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/29998
Title: A versatile finite element model of electric machines
Authors: Fu, WN 
Ho, SL 
Li, HL
Wong, HC
Issue Date: 2003
Source: Electric power components and systems, 2003, v. 31, no. 10, p. 941-966
Abstract: A versatile numerical model for the simulation of dynamic operations of electric machines and drives is presented, and the formulations of the model are described in detail. To consider the field changes along the axial direction, the magnetic field equations are derived using the multislice finite element method. A systematic and simple method to couple the arbitrarily connected external circuits with the multislice magnetic fields using the nodal method is also presented. Because the system equations are derived directly from the fundamental formula describing the machine construction, the model can be applied to simulate the operations of an induction motor, synchronous motor, and brushless d.c. motor. The examples reported include a critical study of a synchronous motor with its windings connected in star and delta, the calculation of the interbar current losses in the rotor cage of an induction motor, and the computation and comparison of the stator phase current waveforms of a brushless d.c. motor with its corresponding experimental results. Moreover, the study also includes the estimation and comparison of the output torque profiles of a five-phase synchronous reluctance motor with its two different rotor structures, the computation of the stator current with or without third harmonics, as well as when the rotor has nonskewed or skewed magnetic poles. In other words, a wealth of examples are reported in this paper to illustrate the versatility and superiority of the proposed algorithm when compared to conventional techniques.
Keywords: Electric machines
Finite element method
Simulation
Publisher: Taylor & Francis
Journal: Electric power components and systems 
ISSN: 1532-5008
EISSN: 1532-5016
DOI: 10.1080/15325000390234454
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

4
Last Week
0
Last month
0
Citations as of Sep 7, 2020

WEB OF SCIENCETM
Citations

3
Last Week
0
Last month
0
Citations as of Sep 18, 2020

Page view(s)

128
Last Week
0
Last month
Citations as of Sep 14, 2020

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.