Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/28871
Title: Finite element analysis of consolidation of layered clay soils using an elastic visco-plastic model
Authors: Zhu, G
Yin, JH 
Keywords: Compression
Consolidation
Creep
Elastic visco-plastic
Finite element modelling
Porewater pressure
Issue Date: 1999
Publisher: John Wiley & Sons
Source: International journal for numerical and analytical methods in geomechanics, 1999, v. 23, no. 4, p. 355-374 How to cite?
Journal: International journal for numerical and analytical methods in geomechanics 
Abstract: This paper presents a general one-dimensional (1-D) finite element (FE) procedure for a highly non-linear 1-D elastic visco-plastic (1-D EVP) model proposed by Yin and Graham for consolidation analysis of layered clay soils. In formulating the 1-D FE procedure, a trapezoidal formula is used to avoid the unsymmetry of the stiffness matrix for a Newton (modified Newton) iteration scheme. Unlike many other 1-D FE approaches in which the initial in situ stresses (or stress/strain states) are considered indirectly or even not considered, the initial in situ stress/strain states are taken into account directly in this paper. The proposed FE procedure is used for analysis of 1-D consolidation of a clay with published test results in the literature. The FE modelling results are in good agreement with the measured results. The FE model and procedure is then used to analyse the consolidation of a multi-layered clay soils with a parametric study on the effects of the variations of creep parameters in Yin and Graham's 1-D EVP model. It is found that the creep parameters ψ/V and t0 have significant influence on the compression and porewater pressure dissipation. For some boundary conditions, changes of parameters in one layer will have some effects on the consolidation behaviour of another layer due to the different consolidation rates. Finally, the importance of initial stress/strain states is illustrated and discussed.This paper presents a general one-dimensional (1-D) finite element (FE) procedure for a highly non-linear 1-D elastic visco-plastic (1-D EVP) model proposed by Yin and Graham for consolidation analysis of layered clay soils. In formulating the 1-D FE procedure, a trapezoidal formula is used to avoid the unsymmetry of the stiffness matrix for a Newton (modified Newton) iteration scheme. Unlike many other 1-D FE approaches in which the initial in situ stresses (or stress/strain states) are considered indirectly or even not considered, the initial in situ stress/strain states are taken into account directly in this paper. The proposed FE procedure is used for analysis of 1-D consolidation of a clay with published test results in the literature. The FE modelling results are in good agreement with the measured results. The FE model and procedure is then used to analyze the consolidation of a multi-layered clay soils with a parametric study on the effects of the variations of creep parameters in Yin and Graham's 1-D EVP model. It is found that the creep parameters ψ/V and t0 have significant influence on the compression and porewater pressure dissipation. For some boundary conditions, changes of parameters in one layer will have some effects on the consolidation behaviour of another layer due to the different consolidation rates. Finally, the importance of initial stress/strain states is illustrated and discussed.
URI: http://hdl.handle.net/10397/28871
ISSN: 0363-9061
EISSN: 1096-9853
DOI: 10.1002/(SICI)1096-9853(19990410)23:4<355
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

13
Last Week
0
Last month
Citations as of Aug 17, 2017

Page view(s)

44
Last Week
4
Last month
Checked on Aug 13, 2017

Google ScholarTM

Check

Altmetric



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.