Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/28759
Title: MLCT and LMCT transitions in acetylide complexes. structural, spectroscopic, and redox properties of ruthenium(II) and -(III) Bis(σ-arylacetylide) complexes supported by a tetradentate macrocyclic tertiary amine ligand
Authors: Choi, MY
Chan, MCW
Zhang, S
Cheung, KK
Che, CM
Wong, KY 
Issue Date: 1999
Source: Organometallics, 1999, v. 18, no. 11, p. 2074-2080 How to cite?
Journal: Organometallics 
Abstract: Ruthenium(II) complexes trans-[Ru(16-TMC)(C≡CC6H4X-p2] (X = OMe (1), Me (2), H (3), F (4), Cl (5); 16-TMC = 1,5,9,13-tetramethyl-l,5,9,13-tetraazacyclohexadecane) are prepared by the reaction of [RuIII(16-TMC)Cl2]Cl with the corresponding alkyne and NaOMe in the presence of zinc amalgam. Low v(C≡C) stretching frequencies are observed for 1-5 and are attributed to the σ-donating nature of 16-TMC. The molecular structures of 1, 3, and 5 have been determined by X-ray crystal analyses, which reveal virtually identical Ru-C and C≡ C bond distances (mean 2.076 and 1.194 Å, respectively). The cyclic voltammograms of 1-5 show quasi-reversible RuIII/II and RuIV/III oxidation couples. Oxidative cleavage of the acetylide ligand in 3 by dioxygen affords [Ru( 16-TMC)(C≡CPh)(CO)]+ (6). Ruthenium(III) derivatives trans-[Ru(16-TMC)(C≡CC6H4X-p)2] + are generated in situ by electrochemical oxidation in dichloromethane or by chemical oxidation of 1-5 with Ce(IV). Their UV-visible absorption spectra show a vibronically structured absorption band with λmax at 716-768 nm. The vibrational progressions, which range from 1730 to 1830 cm-1, imply that the electronic transition involves distortion of the acetylide ligand in the excited state. An assignment of pπ(ArC≡C) →dπ*(RuIII) charge transfer is proposed for this transition.
URI: http://hdl.handle.net/10397/28759
ISSN: 0276-7333
DOI: 10.1021/om990009d
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

41
Last Week
0
Last month
0
Citations as of May 29, 2017

WEB OF SCIENCETM
Citations

41
Last Week
0
Last month
0
Citations as of May 29, 2017

Page view(s)

27
Last Week
0
Last month
Checked on May 28, 2017

Google ScholarTM

Check

Altmetric



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.