Please use this identifier to cite or link to this item:
Title: Denoising by singularity detection
Authors: Hsung, TC
Lun, DPK 
Siu, WC 
Issue Date: 1997
Publisher: Institute of Electrical and Electronics Engineers
Source: IEEE transactions on signal processing, 1997, v. 45, no. 10, p. 2629- How to cite?
Journal: IEEE transactions on signal processing 
Abstract: In this paper, a new algorithm for noise reduction using the wavelet transform is proposed. The new approach can be viewed as a combination of Mallat and Donoho's denoising methods. Similar to Mallat's approach, we estimate the regularity of a signal from the evolution of its wavelet transform coefficients across scales. However, we do not perform maxima detection and processing, and therefore, complicated reconstruction is avoided. Instead, we propose to estimate the regularity of a signal by computing the sum of the modulus of its wavelet coefficients inside the corresponding "cone of influence" and select the coefficients that correspond to the regular part of the signal for reconstruction. In the selection procedure, we propose to use both the techniques of "interscale ratio" and "interscale difference" to obtain the required wavelet coefficients. The algorithm gives an improved denoising result as compared with the previous approaches in terms of mean squared error and visual quality. The new denoising algorithm is also invariant to translation. It does not introduce spurious oscillations and requires very little a priori information of the signal or noise. Besides, we extend the method to two-dimensions to estimate the regularity of an image by computing the sum of the modulus of its wavelet coeflicients inside the so-called "directional cone of influence." The denoising technique is applied to tomographic image reconstruction, where the improved performance of the new approach can clearly be observed.
ISSN: 1053-587X
EISSN: 1941-0476
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record


Last Week
Last month
Citations as of Feb 19, 2019

Page view(s)

Last Week
Last month
Citations as of Feb 18, 2019

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.