Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/27743
Title: Seismic performance of benchmark base-isolated bridges with superelastic Cu-Al-Be restraining damping device
Authors: Zhang, Y
Hu, X
Zhu, S 
Keywords: Base isolator
Bridge
Passive structural control
Seismic response
Shape memory alloy
Issue Date: 2009
Publisher: John Wiley & Sons Ltd
Source: Structural control and health monitoring, 2009, v. 16, no. 6, p. 668-685 How to cite?
Journal: Structural Control and Health Monitoring 
Abstract: This paper presents a simulation-based benchmark control study in which shape memory alloy (SMA)-based displacement restraining damping devices are proposed to control the seismic response of a full-scale three-dimensional seismically excited highway bridge. In this Phase II benchmark problem, the bridge is fully isolated at both the abutments and the central pier location using nonlinear hysteretic bearings with a lead core on the inside and an elastomer surrounding the lead core. The SMA restraining damping device is a passive control device employing superelastic Cu-Al-Be alloy wires as its core re-centering component, which restrains the base-isolated bridge from excessive displacement responses, especially under extreme earthquake events. In this benchmark study, a total of 20 such passive control devices are supposed to be installed at the isolation level between the deck and the isolators on bridge piers and center column at 10 locations, each location consisting of a single orthogonal pair to control the responses in both directions. The performance of the passive control devices is analyzed in terms of the performance indices in the benchmark problem definition at a variety of ambient environment temperatures at 23, 0, -25 and - 50°C, respectively. The results of this simulation-based benchmark control study show that the proposed passive control device can effectively reduce the excessive displacement responses and permanent bearing deformations of the benchmark base-isolated bridge subjected to strong ground motions, and temperature seems to have little effect on the performance of the superelastic Cu-Al-Be restraining damping device in bridge response control.
URI: http://hdl.handle.net/10397/27743
DOI: 10.1002/stc.327
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

35
Last Week
0
Last month
0
Citations as of Nov 5, 2018

WEB OF SCIENCETM
Citations

33
Last Week
2
Last month
0
Citations as of Nov 14, 2018

Page view(s)

73
Last Week
0
Last month
Citations as of Nov 19, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.