Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/27719
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorXie, J-
dc.creatorQi, L-
dc.date.accessioned2015-10-13T08:27:20Z-
dc.date.available2015-10-13T08:27:20Z-
dc.identifier.urihttp://hdl.handle.net/10397/27719-
dc.language.isoenen_US
dc.publisherInstitute for Scientific Computing and Informationen_US
dc.subjectAdjacencyen_US
dc.subjectCliqueen_US
dc.subjectCocliqueen_US
dc.subjectH-eigenvalueen_US
dc.subjectHypergraphen_US
dc.subjectLaplacianen_US
dc.subjectSignless laplacianen_US
dc.subjectTensoren_US
dc.titleThe clique and coclique numbers’ bounds based on the H-eigenvalues of uniform hypergraphsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage318-
dc.identifier.epage327-
dc.identifier.volume12-
dc.identifier.issue2-
dcterms.abstractIn this paper, some inequality relations between the Laplacian/signless Laplacian H-eigenvalues and the clique/coclique numbers of uniform hypergraphs are presented. For a connected uniform hypergraph, some tight lower bounds on the largest Laplacian H+-eigenvalue and signless Laplacian H-eigenvalue related to the clique/coclique numbers are given. And some upper and lower bounds on the clique/coclique numbers related to the largest Laplacian/signless Laplacian H-eigenvalues are obtained. Also some bounds on the sum of the largest/smallest adjacency/ Laplacian/signless Laplacian H-eigenvalues of a hypergraph and its complement hypergraph are showed. All these bounds are consistent with what we have known when k is equal to 2.-
dcterms.bibliographicCitationInternational journal of numerical analysis and modeling, 2015, v. 12, no. 2, p. 318-327-
dcterms.isPartOfInternational journal of numerical analysis and modeling-
dcterms.issued2015-
dc.identifier.scopus2-s2.0-84929399479-
dc.identifier.eissn1705-5105-
dc.identifier.rosgroupid2015002474-
dc.description.ros2015-2016 > Academic research: refereed > Publication in refereed journal-
Appears in Collections:Journal/Magazine Article
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

4
Last Week
0
Last month
Citations as of Feb 15, 2020

Page view(s)

155
Last Week
4
Last month
Citations as of Jul 12, 2020

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.