Please use this identifier to cite or link to this item:
Title: CFD study of exhaled droplet transmission between occupants under different ventilation strategies in a typical office room
Authors: He, Q
Niu, J 
Gao, N
Zhu, T
Wu, J
Keywords: Aerosol transmission
Eulerian drift-flux method
Exhaled droplets
Ventilation strategy
Issue Date: 2011
Publisher: Pergamon Press
Source: Building and environment, 2011, v. 46, no. 2, p. 397-408 How to cite?
Journal: Building and environment 
Abstract: This paper investigated the transmission of respiratory droplets between two seated occupants equipped with one type of personalized ventilation (PV) device using round movable panel (RMP) in an office room. The office was ventilated by three different total volume (TV) ventilation strategies, i.e. mixing ventilation (MV), displacement ventilation (DV), and under-floor air distribution (UFAD) system respectively as background ventilation methods. Concentrations of particles with aerodynamic diameters of 0.8 μm, 5 μm, and 16 μm as well as tracer gas were numerically studied in the Eulerian frame. Two indexes, i.e. intake fraction (IF) and concentration uniformity index R C were introduced to evaluate the performance of ventilation systems. It was found that without PV, DV performed best concern protecting the exposed manikin from the pollutants exhaled by the polluting manikin. In MV when the exposed manikin opened RMP the inhaled air quality could always be improved. In DV and UFAD application of RMP might sometimes, depending on the personalized airflow rate, increase the exposure of the others to the exhaled droplets of tracer gas, 0.8 μm particles, and 5 μm particles from the infected occupants. Application of PV could reduce R C for all the three TV systems of 0.8 μm and 5 μm particles. PV enhanced mixing degree of particles under DV and UFAD based conditions much stronger than under MV based ones. PV could increase the average concentration in the occupied zone of the exposed manikin as well as provide clean personalized airflow. Whether inhaled air quality could be improved depended on the balance of pros and cons of PV.
ISSN: 0360-1323
EISSN: 1873-684X
DOI: 10.1016/j.buildenv.2010.08.003
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record


Last Week
Last month
Citations as of Aug 11, 2018


Last Week
Last month
Citations as of Jul 24, 2018

Page view(s)

Last Week
Last month
Citations as of Aug 13, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.