Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/26911
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorChen, J-
dc.creatorQi, L-
dc.date.accessioned2014-12-19T06:54:08Z-
dc.date.available2014-12-19T06:54:08Z-
dc.identifier.issn1070-5325-
dc.identifier.urihttp://hdl.handle.net/10397/26911-
dc.language.isoenen_US
dc.publisherJohn Wiley & Sonsen_US
dc.subjectGlobal convergenceen_US
dc.subjectInexact newton methoden_US
dc.subjectKrylov subspace methodsen_US
dc.subjectNonmonotonic techniqueen_US
dc.subjectNonsmooth analysisen_US
dc.subjectSuperlinear convergenceen_US
dc.titleGlobally and superlinearly convergent inexact Newton-Krylov algorithms for solving nonsmooth equationsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage155-
dc.identifier.epage174-
dc.identifier.volume17-
dc.identifier.issue1-
dc.identifier.doi10.1002/nla.673-
dcterms.abstractThis paper presents some variants of the inexact Newton method for solving systems of nonlinear equations defined by locally Lipschitzian functions. These methods use variants of Newton's iteration in association with Krylov subspace methods for solving the Jacobian linear systems. Global convergence of the proposed algorithms is established under a nonmonotonic backtracking strategy. The local convergence based on the assumptions of semismoothness and BD-regularity at the solution is characterized, and the way to choose an inexact forcing sequence that preserves the rapid convergence of the proposed methods is also indicated. Numerical examples are given to show the practical viability of these approaches.-
dcterms.bibliographicCitationNumerical linear algebra with applications, 2010, v. 17, no. 1, p. 155-174-
dcterms.isPartOfNumerical linear algebra with applications-
dcterms.issued2010-
dc.identifier.isiWOS:000273802100010-
dc.identifier.scopus2-s2.0-72449124295-
dc.identifier.eissn1099-1506-
dc.identifier.rosgroupidr54532-
dc.description.ros2010-2011 > Academic research: refereed > Publication in refereed journal-
Appears in Collections:Journal/Magazine Article
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

3
Last Week
0
Last month
0
Citations as of Sep 4, 2020

WEB OF SCIENCETM
Citations

3
Last Week
0
Last month
0
Citations as of Oct 21, 2020

Page view(s)

121
Last Week
0
Last month
Citations as of Oct 21, 2020

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.