Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/26354
Title: Mechanisms of peeling failures of bonds during ultrasonic wedge bonding
Authors: Xu, CH
Chan, HLW 
Cheung, YM
Liu, PCK
Keywords: Acoustic impedance
Al wire
Bonding pad metallization
Energy-dispersive spectroscopy
Peeling
Scanning electron microscope
Ultrasonic bonding
Issue Date: 2004
Source: Materials and manufacturing processes, 2004, v. 19, no. 2, p. 329-339 How to cite?
Journal: Materials and Manufacturing Processes 
Abstract: The metallization of wire bonding pads on Si-based integrated circuits (ICs) contains Ti, TiN, and Al layers with vertical W-plugs located through the Ti and TiN layers. One percent Si-Al wire (32 μm in diameter) was bonded on the pads by an ultrasonic transducer using a wire bonding machine. Peeling failures occurred during the ultrasonic bonding process. The peeling fractures were examined using a scanning electron microscope (SEM) with an energy-dispersive spectroscopy (EDS) system. The results showed that bonds peeled off from the interface between the Al layer and the top surface of the W-plugs or from the interface between the Si-base and the bottom surface of the W-plugs. The distribution of W-plugs also affected the bond peeling from the top or bottom surfaces of the W-plugs. Mechanisms giving rise to the peeling failure of bonds were analyzed based on the acoustic impedance of materials, which determined the amount of ultrasonic energy transmitted from one material to another. Two different paths of ultrasonic energy transmission occurred during the bonding process due to the different acoustic impedances of the materials. One is from the Al layer, through the TiN and Ti layers, to the IC. The other is from the Al layer, through the W-plugs, to the IC. The different distributions of ultrasonic energy at the positions with W-plugs and without W-plugs caused stress concentrations around the top or bottom surfaces of the W-plugs, which resulted in peeling failures of the bonds.
URI: http://hdl.handle.net/10397/26354
ISSN: 1042-6914
DOI: 10.1081/AMP-120029958
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

1
Last Week
0
Last month
0
Citations as of Aug 21, 2017

WEB OF SCIENCETM
Citations

1
Last Week
0
Last month
0
Citations as of Aug 4, 2017

Page view(s)

37
Last Week
0
Last month
Checked on Aug 20, 2017

Google ScholarTM

Check

Altmetric



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.