Please use this identifier to cite or link to this item:
Title: Resonant switched reluctance motor drive and its power conditioning with switched-capacitor techniques
Authors: Yeung, Yiu Pun Benny
Keywords: Hong Kong Polytechnic University -- Dissertations
Switching circuits
Parallel resonant circuits.
Electric current converters.
Issue Date: 2004
Publisher: The Hong Kong Polytechnic University
Abstract: In the past, switched-capacitor DC-DC converters were mainly used on low power applications for doubling voltage or invert voltage. They are not suitable for high power applications because of their current stress problem and low efficiency. In this project, families of switched-capacitor DC-DC resonant converters are developed. Current stress problems have been solved in the circuits so that they can work under high power operation. All transistors in the circuits are switched under zero-current switching condition to improve the efficiency. Since the improvements are done, the switched-capacitor techniques can be used for power conditioning for applications such as motor drives. Implementation of high power switched-capacitor resonant converter is done. Switched reluctance motor (SRM) has the advantages of high power density, fast response and robust. To drive a SRM, electronic circuit is need. A newly designed switched reluctance motor drive is introduced in the thesis. Active-clamp resonant technique is applied in the motor drive to provide soft-switching for all high switching frequency transistors. Performances of both electromagnetic interference (EMI) and efficiency of the motor drive are improved. Performance of Switched reluctance motor is usually poor when its speed is high because of its long regenerating stage. A method by using switched-capacitor based power conditioning is proposed in the thesis. Waveforms of the commutating current of the SRM are modified by a switched-capacitor front-end converter. In the whole system, all high frequency transistors are switched under zero-voltage switching condition. Mathematical Analysis, Computer simulation, and experiments have been done for all proposed circuits. Description and explanation of the results are provided in the thesis.
Description: xxiv, 166 leaves : ill. ; 30 cm.
PolyU Library Call No.: [THS] LG51 .H577P EE 2004 Yeung
Rights: All rights reserved.
Appears in Collections:Thesis

Files in This Item:
File Description SizeFormat 
b17811272_link.htmFor PolyU Users162 BHTMLView/Open
b17811272_ir.pdfFor All Users (Non-printable)4.05 MBAdobe PDFView/Open
Show full item record
PIRA download icon_1.1View/Download Contents

Page view(s)

Last Week
Last month
Citations as of Feb 18, 2019


Citations as of Feb 18, 2019

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.