Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/25145
Title: Photodynamic action of LED-activated nanoscale photosensitizer in nasopharyngeal carcinoma cells
Authors: Bai, DQ
Yow, CMN
Tan, Y
Chu, ESM
Xu, CS
Issue Date: 2010
Publisher: Maik Nauka/Interperiodica/Springer
Source: Laser physics, 2010, v. 20, no. 2, p. 544-550 How to cite?
Journal: Laser Physics 
Abstract: Background: Photodynamic therapy has been confirmed to an efficient therapeutic modality of malignant tumors. The aim of the present study was to explore the photodynamic action of LED-activated nanoscale photosensitizer- loading hypocrellin in nasopharyngeal carcinoma cells. Material/Methods: Nasopharyngeal carcinoma cell line CNE2 cells were subjected to photodynamic therapy with hypocrellinloaded nanophotosensitizer. The uptake of the nanophotosensitizer in the CNE-2 cells was measured using a spectrophotometer and photodynamic toxicity was investigated 18 h after LED radiation treatment. Apoptosis was determined using flow cytometry with propidum iodine staining, and nuclear staining with Hoechst 33258. Active caspase-3 in the CNE2 cells was evaluated using flow cytometry with phycoerythrin (PE)-conjugated anti-active caspase-3 antibodies. Results: The cellular uptake of the nanophotosensitizer in the CNE-2 cells reached optimal at 6 h. LED-activated nanophotosensitizer resulted in doseand light-dependent phototoxicity. Apoptotic rate 18 h after PDT increased to 34.32 ± 1.94% under the light energy of 1 J/cm 2. Hoechest 33258 staining reinforced the findings above. Condensation of chromatin and nuclear fragmentations was found in many PDT-treated cells. The activated caspase-3 in the CNE2 cells significantly increased up to 43.90% when the CNE2 cells were exposed to the nanophotosensitizer for 6 h and then 1 J/cm 2 irradiation. Conclusion: LED-activated nanophotosensitizer significantly killed the CNE2 cells and enhanced apoptosis and activated caspase-3 in the CNE2 cells. The hypocrellin-loaded nanophotosensitizer might be efficient photosensitizer and LED-activated nanophotosensitizer can be developed for treating nasopharyngeal carcinoma.
URI: http://hdl.handle.net/10397/25145
DOI: 10.1134/S1054660X10030011
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

18
Last Week
0
Last month
0
Citations as of Sep 10, 2017

WEB OF SCIENCETM
Citations

15
Last Week
0
Last month
0
Citations as of Aug 4, 2017

Page view(s)

33
Last Week
0
Last month
Checked on Sep 17, 2017

Google ScholarTM

Check

Altmetric



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.