Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/2493
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Electrical Engineering-
dc.contributorDepartment of Applied Physics-
dc.creatorZeng, M-
dc.creatorCai, MQ-
dc.creatorOr, DSW-
dc.creatorChan, HLW-
dc.date.accessioned2014-12-11T08:27:03Z-
dc.date.available2014-12-11T08:27:03Z-
dc.identifier.issn0021-8979-
dc.identifier.urihttp://hdl.handle.net/10397/2493-
dc.language.isoenen_US
dc.publisherAmerican Institute of Physicsen_US
dc.rights© 2010 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in M. Zeng et al., J. Appl. Phys. 107, 083713 (2010) and may be found at http://link.aip.org/link/?jap/107/083713en_US
dc.subjectAb initio calculationsen_US
dc.subjectElectrical conductivityen_US
dc.subjectElectrical resistivityen_US
dc.subjectFermi levelen_US
dc.subjectFermi surfaceen_US
dc.subjectFerromagnetic materialsen_US
dc.subjectGallium alloysen_US
dc.subjectHeat treatmenten_US
dc.subjectManganese alloysen_US
dc.subjectMartensitic transformationsen_US
dc.subjectNickel alloysen_US
dc.subjectShape memory effectsen_US
dc.titleAnisotropy of the electrical transport properties in a Ni₂MnGa single crystal : experiment and theoryen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationAuthor name used in this publication: Siu Wing Oren_US
dc.description.otherinformationAuthor name used in this publication: Helen Lai Wa Chanen_US
dc.identifier.spage1-
dc.identifier.epage5-
dc.identifier.volume107-
dc.identifier.issue8-
dc.identifier.doi10.1063/1.3354105-
dcterms.abstractElectrical transport properties in ferromagnetic shape memory Ni–Mn–Ga single crystal have been investigated both in experiment and theory by analyzing electrical resistivity along different crystallographic directions during heating. The experimental results show a clear first-order martensitic transformation and a large anisotropic resistivity AR of 23.7% at the tetragonal martensitic phase. The theoretical conductivity (σ=1/p), estimated using first-principles calculations combined with classical Boltzman transport theory, proves essential crystallographic anisotropic resistivity (AR=31%) in the martensitic phase and agrees well with experimental results. The AR in the martensitic phase is reveled to mainly originate from the splitting of the minority-spin Ni 3d and Ga 4p states near the Fermi level and hence reconstruction of the minority-spin Fermi surface upon martensitic transformation.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of applied physics, 15 Apr. 2010, v. 107, no. 8, 083713, p. 1-5-
dcterms.isPartOfJournal of applied physics-
dcterms.issued2010-04-15-
dc.identifier.isiWOS:000277303200055-
dc.identifier.scopus2-s2.0-77952356672-
dc.identifier.eissn1089-7550-
dc.identifier.rosgroupidr45193-
dc.description.ros2009-2010 > Academic research: refereed > Publication in refereed journal-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
JApplPhys_107_083713.pdf440.5 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

125
Last Week
1
Last month
Citations as of Mar 24, 2024

Downloads

251
Citations as of Mar 24, 2024

SCOPUSTM   
Citations

6
Last Week
0
Last month
0
Citations as of Mar 28, 2024

WEB OF SCIENCETM
Citations

6
Last Week
0
Last month
0
Citations as of Mar 28, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.