Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/24709
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estate-
dc.creatorChen, D-
dc.creatorHe, H-
dc.creatorZhang, D-
dc.creatorWang, H-
dc.creatorNi, M-
dc.date.accessioned2015-06-23T09:10:03Z-
dc.date.available2015-06-23T09:10:03Z-
dc.identifier.urihttp://hdl.handle.net/10397/24709-
dc.language.isoenen_US
dc.publisherMolecular Diversity Preservation International (MDPI)en_US
dc.rights© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).en_US
dc.rightsThe following publication Chen, D.; He, H.; Zhang, D.; Wang, H.; Ni, M. Percolation Theory in Solid Oxide Fuel Cell Composite Electrodes with a Mixed Electronic and Ionic Conductor. Energies 2013, 6, 1632-1656 is available at https://dx.doi.org/10.3390/en6031632en_US
dc.subjectCoordination numberen_US
dc.subjectElectrochemically active sitesen_US
dc.subjectLSCFen_US
dc.subjectMixed electron and ion conductoren_US
dc.subjectPercolation theoryen_US
dc.subjectSolid oxide fuel cellen_US
dc.subjectThree-phase-boundary sitesen_US
dc.titlePercolation theory in solid oxide fuel cell composite electrodes with a mixed electronic and ionic conductoren_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1632en_US
dc.identifier.epage1656en_US
dc.identifier.volume6en_US
dc.identifier.issue3en_US
dc.identifier.doi10.3390/en6031632en_US
dcterms.abstractPercolation theory is generalized to predict the effective properties of specific solid oxide fuel cell composite electrodes, which consist of a pure ion conducting material (e.g., YSZ or GDC) and a mixed electron and ion conducting material (e.g., LSCF, LSCM or CeO2). The investigated properties include the probabilities of an LSCF particle belonging to the electron and ion conducting paths, percolated three-phase-boundary electrochemical reaction sites, which are based on different assumptions, the exposed LSCF surface electrochemical reaction sites and the revised expressions for the inter-particle ionic conductivities among LSCF and YSZ materials. The effects of the microstructure parameters, such as the volume fraction of the LSCF material, the particle size distributions of both the LSCF and YSZ materials (i.e., the mean particle radii and the non-dimensional standard deviations, which represent the particle size distributions) and the porosity are studied. Finally, all of the calculated results are presented in non-dimensional forms to provide generality for practical application. Based on these results, the relevant properties can be easily evaluated, and the microstructure parameters and intrinsic properties of each material are specified.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationEnergies, Mar. 2013, v. 6, no. 3, p. 1632-1656-
dcterms.isPartOfEnergies-
dcterms.issued2013-
dc.identifier.isiWOS:000316604500025-
dc.identifier.scopus2-s2.0-84876447093-
dc.identifier.eissn1996-1073en_US
dc.identifier.rosgroupidr63774-
dc.description.ros2012-2013 > Academic research: refereed > Publication in refereed journalen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Chen_Percolation_Solid_Oxide.pdf1.7 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

142
Last Week
2
Last month
Citations as of Apr 14, 2024

Downloads

78
Citations as of Apr 14, 2024

SCOPUSTM   
Citations

31
Last Week
0
Last month
0
Citations as of Apr 12, 2024

WEB OF SCIENCETM
Citations

28
Last Week
0
Last month
0
Citations as of Apr 18, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.