Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/2457
Title: Synthesis and electrochemical studies of some ruthenium aquo complexes with N-substituted dipyridylamines
Authors: Lee, Kam-han
Keywords: Electrocatalysis
Ruthenium oxide superconductors
Electrochemistry
Hong Kong Polytechnic University -- Dissertations
Issue Date: 2009
Publisher: The Hong Kong Polytechnic University
Abstract: Ruthenium oxo complexes are potential electrocatalysts for a number of oxidation reactions. However, the electro-generation of ruthenium oxo species is kinetically slow on electrode surface which limits their applications. In this study, we investigated some factors associated with the promotion of the electro-generation of ruthenium oxo species on electrodes. The synthesis and characterization of [RuII(tpy)(MBP)(H2O)]3+, [RuII(tpy)(MBHP)(H20)]3+, [RuII(tpy)(dppa)(H2O)]2+ and [RuII(tpy)(dpha)(H2O)]2+ (tpy= 2,2':6,'2"-terpyridine, MBP= 1 -methyl-1 -(3-N, N'-bis(2-pyridyl)propylammo) pyrrolidinium, MBHP= 1 -methyl-l-(6-N, N'-bis(2-pyridyl)hexylamino)pyrrolidinium, dppa= (2,2'-dipyridyl)-n-propylamine and dpha= (2,2'-dipyridyl)-n-hexylamine) and the electrochemical properties of these complexes are the focuses of study in this project. The structures of [RuII(tpy)(MBP)(H2O)]3+ and [RuII(tpy)(dppa)(H2O)]2+ have been determined by X-ray crystallography. The effect of anions (including perchlorate, trifluoroacetate, trifluoromethanesulfonate, sulfate, tetrafluoroborate and hexafluorophosphate) on the rate of electro-generation of ruthenium oxo species was investigated. Among the anions investigated, perchlorate was found to promote the electro-generation of ruthenium oxo species. However, only the perchlorate anions alone is not sufficient to promote the oxidation of RuIII-OH to RuIV=O. It was found that in addition to perchlorate, the presence of an alkyl chain on the amine nitrogen of the 2,2'-dipyridylamine (dpa) is essential to speed up the electrochemical formation of RuIV=O species. The perchlorate anions have no effect in promoting the electrochemical oxidation of [RuIII(tpy)(dpa)(OH)]2+ which contains no alkyl tail on the amine nitrogen. The effect of the length and nature of the tail tagged on the 2,2'-dipyridylamine ligand on the rate of electro-generation of ruthenium oxo species was therefore also investigated. All the complexes [RuII(tpy)(MBP)(H2O)]3+, [RuII(tpy)(MBHP)(H2O)]3+, [RuII(tpy)(dppa)(H2O)]2+ and [Run(tpy)(dpha)(H2O)]2+containing either a cationic or a neutral tail on the 2,2'-dipyridylamine ligand showed an enhancement of the rate of oxo formation. A comparison of the cyclic voltammograms of [RuII(tpy)(dpa)(H2O)]2+, [RuII(tpy)(dppa)(H2O)]2+ and [RuII(tpy)(dpha)(H2O)]2+ suggested that a longer alkyl chain length can promote better formation of RuIV=O species. A mechanism involving the association of ruthenium complexes through hydrogen bonding between the perchlorate anion and the C-H hydrgoens on the alkyl chain, which can promote the formation of pre-associated [RuIII-OH...HO-RuIII] species, was proposed. Hydrogen bonding between the perchlorate anion and the C-H hydrogens on the alkyl chain were confirmed by the X-ray structure of the ruthenium complexes with the perchlorate anions.
Description: xxiii, 168 p. : ill. ; 30 cm.
PolyU Library Call No.: [THS] LG51 .H577M ABCT 2009 Lee
URI: http://hdl.handle.net/10397/2457
Rights: All rights reserved.
Appears in Collections:Thesis

Files in This Item:
File Description SizeFormat 
b22858672_link.htmFor PolyU Users 162 BHTMLView/Open
b22858672_ir.pdfFor All Users (Non-printable)2.44 MBAdobe PDFView/Open
Show full item record

Page view(s)

654
Last Week
2
Last month
Checked on Mar 19, 2017

Download(s)

502
Checked on Mar 19, 2017

Google ScholarTM

Check



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.