Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/23653
Title: Application of complex extreme learning machine to multiclass classification problems with high dimensionality : a THz spectra classification problem
Authors: Yin, XX
Hadjiloucas, S
He, J
Zhang, Y
Wang, Y
Zhang, D 
Keywords: Complex extreme learning machine
Lagrangian
Multiclass classification
Quaternary classification
Reproducing kernel Hilbert space
Issue Date: 2015
Publisher: Elsevier Inc.
Source: Digital signal processing : A review journal, 2015, v. 40, no. 1, p. 40-52 How to cite?
Journal: Digital Signal Processing: A Review Journal 
Abstract: We extend extreme learning machine (ELM) classifiers to complex Reproducing Kernel Hilbert Spaces (RKHS) where the input/output variables as well as the optimization variables are complex-valued. A new family of classifiers, called complex-valued ELM (CELM) suitable for complex-valued multiple-input-multiple-output processing is introduced. In the proposed method, the associated Lagrangian is computed using induced RKHS kernels, adopting a Wirtinger calculus approach formulated as a constrained optimization problem similarly to the conventional ELM classifier formulation. When training the CELM, the Karush-Khun-Tuker (KKT) theorem is used to solve the dual optimization problem that consists of satisfying simultaneously smallest training error as well as smallest norm of output weights criteria. The proposed formulation also addresses aspects of quaternary classification within a Clifford algebra context. For 2D complex-valued inputs, user-defined complex-coupled hyper-planes divide the classifier input space into four partitions. For 3D complex-valued inputs, the formulation generates three pairs of complex-coupled hyper-planes through orthogonal projections. The six hyper-planes then divide the 3D space into eight partitions. It is shown that the CELM problem formulation is equivalent to solving six real-valued ELM tasks, which are induced by projecting the chosen complex kernel across the different user-defined coordinate planes. A classification example of powdered samples on the basis of their terahertz spectral signatures is used to demonstrate the advantages of the CELM classifiers compared to their SVM counterparts. The proposed classifiers retain the advantages of their ELM counterparts, in that they can perform multiclass classification with lower computational complexity than SVM classifiers. Furthermore, because of their ability to perform classification tasks fast, the proposed formulations are of interest to real-time applications.
URI: http://hdl.handle.net/10397/23653
ISSN: 1051-2004
DOI: 10.1016/j.dsp.2015.01.007
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

2
Last Week
0
Last month
0
Citations as of Jan 9, 2018

WEB OF SCIENCETM
Citations

9
Last Week
0
Last month
0
Citations as of Jan 22, 2018

Page view(s)

70
Last Week
1
Last month
Citations as of Jan 21, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.