Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/22561
Title: Hydrothermal microemulsion synthesis of oxidatively stable cobalt nanocrystals encapsulated in surfactant/polymer complex shells
Authors: Zhang, XH
Ho, KM
Wu, AH
Wong, KH
Li, P 
Issue Date: 2010
Publisher: Amer Chemical Soc
Source: Langmuir, 2010, v. 26, no. 8, p. 6009-6014 How to cite?
Journal: Langmuir 
Abstract: Air-stable magnetic cobalt nanocrystals have been conveniently prepared via a reverse micellar synthesis, followed by a hydrothermal treatment. The synthesis was carried out by first mixing an aqueous solution containing cobalt chloride and poly(sodium 4-styrenesulfonate) (PSS) with an organic mixture containing cetyltrimethylammonium bromide (CTAB) to form reverse micelles, followed by reducing cobalt ions with sodium borohydride. The resultant nanoparticles were then undergone a hydrothermal treatment at 165 °C for 8 h to generate well-dispersed CTAB/PSS-encapsulated cobalt nanocrystals with an average diameter of 3.5 ± 0.5 nm. The nanoparticles were highly crystalline with a hexagonal close-packed crystal phase. The presence of CTAB/PSS complex coatings was identified by FT-IR and UV?vis spectroscopies as well as thermogravimetry analyses. The nanocrystals exhibited superparamagnetic property at room temperature with a saturation magnetization (Ms) of 95 emu/g. The magnetization could be largely preserved after storage at room temperature for 4 months as the Ms value only slightly decreased to 88 emu/g (measured at 300 K). Thus, the polymer encapsulation could not only improve thermal stability of the micelles for the growth and nucleation of Co atoms but also protect the resulting cobalt nanocrystals from oxidation through forming an oxygen impermeable sheath.
URI: http://hdl.handle.net/10397/22561
DOI: 10.1021/la9045918
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

19
Last Week
0
Last month
0
Citations as of Aug 12, 2017

WEB OF SCIENCETM
Citations

18
Last Week
0
Last month
0
Citations as of Aug 12, 2017

Page view(s)

37
Last Week
2
Last month
Checked on Aug 13, 2017

Google ScholarTM

Check

Altmetric



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.