Please use this identifier to cite or link to this item:
Title: Deformation and pore-water pressure responses of elastic viscoplastic soil
Authors: Zhu, JG
Yin, JH 
Issue Date: 2001
Publisher: American Society of Civil Engineers
Source: Journal of engineering mechanics, 2001, v. 127, no. 9, p. 899-908 How to cite?
Journal: Journal of engineering mechanics 
Abstract: The deformation and pore-water pressure responses of clayey soils are of great interest to civil engineers. In this paper, displacements and pore-water pressures of a clay subjected to the loading of a strip footing are simulated using a fully coupled finite-element (FE) consolidation method incorporated with a newly developed 3D elastic viscoplastic (EVP) model for the clay. A brief introduction to the 3D EVP model and its implementation in the FE analysis is presented. The 3D EVP model can describe the time-dependent stress-strain behaviour of clayey soils, including volumetric creep. The main objective of this paper is to examine how the viscosity (or creep parameter ψ/V) of the clay affects the deformation and pore-water pressure responses of the clay. For this, the value of the creep parameter ψ/V is varied in the FE analysis. When viscous nature is taken into account, the pore-water pressure in the soil is higher than that without consideration of the viscous nature. The phenomenon of pore-water pressure increase due to creep is studied in this paper. It is found that larger creep parameter ψ/V results in higher pore-water pressure and larger deformation in the soil. The difference of the pore-water pressure due to the Mandel-Cryer effects and the creep is investigated using the FE model and discussed in this paper. In addition, a few other parameters (Poisson's ratio v, permeability k, clay layer thickness h, and thickness h to a half footing width a ratio h/a) are also varied to investigate their influence on deformation and pore-water pressure of the soil with creep. It is found that, the lower the permeability of soil, the higher is the pore-water pressure and the larger is the local deformation. The thickness of the soil layer also has a great influence on the pore-water pressure induced by the viscous effect. All these increased pore-water pressures result from a balance of the pore-water pressures induced by creep (and the Mandel-Cryer effects or both) and dissipated because of drainage.
ISSN: 0733-9399
EISSN: 1943-7889
DOI: 10.1061/(ASCE)0733-9399(2001)127:9(899)
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record


Last Week
Last month
Citations as of Jul 11, 2018


Last Week
Last month
Citations as of Jul 15, 2018

Page view(s)

Last Week
Last month
Citations as of Jul 16, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.