Please use this identifier to cite or link to this item:
Title: Combined comfort model of thermal comfort and air quality on buses in Hong Kong
Authors: Shek, KW
Chan, WT
Keywords: Air quality
Percentage of dissatisfaction
Subjective sensation response
Thermal comfort
Issue Date: 2008
Publisher: Elsevier
Source: Science of the total environment, 2008, v. 389, no. 2-3, p. 277-282 How to cite?
Journal: Science of the total environment 
Abstract: Air-conditioning settings are important factors in controlling the comfort of passengers on buses. The local bus operators control in-bus air quality and thermal environment by conforming to the prescribed levels stated in published standards. As a result, the settings are merely adjusted to fulfill the standards, rather than to satisfy the passengers' thermal comfort and air quality. Such "standard-oriented" practices are not appropriate; the passengers' preferences and satisfaction should be emphasized instead. Thus a "comfort-oriented" philosophy should be implemented to achieve a comfortable in-bus commuting environment. In this study, the achievement of a comfortable in-bus environment was examined with emphasis on thermal comfort and air quality. Both the measurement of physical parameters and subjective questionnaire surveys were conducted to collect practical in-bus thermal and air parameters data, as well as subjective satisfaction and sensation votes from the passengers. By analyzing the correlation between the objective and subjective data, a combined comfort models were developed. The models helped in evaluating the percentage of dissatisfaction under various combinations of passengers' sensation votes towards thermal comfort and air quality. An effective approach integrated the combined comfort model, hardware and software systems and the bus air-conditioning system could effectively control the transient in-bus environment. By processing and analyzing the data from the continuous monitoring system with the combined comfort model, air-conditioning setting adjustment commands could be determined and delivered to the hardware. This system adjusted air-conditioning settings depending on real-time commands along the bus journey. Therefore, a comfortable in-bus air quality and thermal environment could be achieved and efficiently maintained along the bus journey despite dynamic outdoor influences. Moreover, this model can help optimize air-conditioning control by striking a beneficial balance between energy conservation and passengers' satisfaction level.
ISSN: 0048-9697
EISSN: 1879-1026
DOI: 10.1016/j.scitotenv.2007.08.063
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record


Last Week
Last month
Citations as of Feb 16, 2019


Last Week
Last month
Citations as of Feb 15, 2019

Page view(s)

Last Week
Last month
Citations as of Feb 18, 2019

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.