Please use this identifier to cite or link to this item:
Title: Damage detection using the eigenparameter decomposition of substructural flexibility matrix
Authors: Weng, S
Zhu, HP
Xia, Y 
Mao, L
Keywords: Damage detection
Structural health monitoring
Substructure method
Issue Date: 2013
Publisher: Academic Press
Source: Mechanical systems and signal processing, 2013, v. 34, no. 1-2, p. 19-38 How to cite?
Journal: Mechanical systems and signal processing 
Abstract: The crack or local damage on a structure reduces the stiffness of the structure, and thus leads to the modification of the dynamic properties. Damage detection is widely performed by comparing the initial modal data of the intact structure with those of the damaged structure. For a large-scale structure, the local damage usually introduces slight change to the global modal data, which makes the local damage difficult to be detected. This paper proposes a new substructuring method for the damage detection of a structure. The global structure is divided into manageable substructures. The modal data measured on the global structure are disassembled for obtaining the independent substructural dynamic flexibility matrices, under the force and displacement compatibility constraints. Thereafter, the substructural flexibility matrix is decomposed into its eigenvalues and eigenvectors to be used as the indicators for damage detection. Since the substructuring method concerns the local area by treating it as an independent structure, the substructural eigenparameters are more sensitive to the local damage than the global eigenparameters. The proposed substructuring method is firstly verified by a laboratory-tested portal frame structure. The location of the artificial cuts can be detected successfully by comparing the change of substructural eigenparameters. The proposed method is then applied to the 600 m tall Guangzhou New TV Tower. As compared with the global eigenparameters, the substructural eigenparameters bear larger changes caused by the local damage and thus are more sensitive to the local damage.
ISSN: 0888-3270
EISSN: 1096-1216
DOI: 10.1016/j.ymssp.2012.08.001
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record


Last Week
Last month
Citations as of Jul 11, 2018


Last Week
Last month
Citations as of Jul 15, 2018

Page view(s)

Last Week
Last month
Citations as of Jul 16, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.