Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/19906
Title: Effect of a prodrug of the green tea polyphenol (-)-epigallocatechin-3-gallate on the growth of androgen-independent prostate cancer in vivo
Authors: Lee, SC
Chan, WK
Lee, TW
Lam, WH
Wang, X
Chan, TH
Wong, YC
Issue Date: 2008
Publisher: Routledge, Taylor & Francis Group
Source: Nutrition and cancer, 2008, v. 60, no. 4, p. 483-491 How to cite?
Journal: Nutrition and cancer 
Abstract: Epigallocatechin-3-gallate (EGCG) is the major and most potent polyphenol compound of green tea that has been shown to have anticancer effects against various types of cancers. In this study, in addition to the EGCG compound, a synthetic derivative, the peracetate of EGCG (EGCG-P), was used to investigate the inhibitory effects on growth of androgen-independent prostate cancer in vivo. The advantage of EGCG-P is that it may act as a prodrug, leading to higher bioavailability than EGCG itself. The aim of our study was to compare the differences between EGCG and EGCG-P on their inhibitory effect on androgen-independent prostate cancer, CWR22R, xenograft model in nude mice. The mice were administrated daily with solvent dimethyl sulfoxide, EGCG, and EGCG-P separately through intraperitoneal injection for 20 days. Tumor volume and body weight of nude mice were recorded daily. Serum prostate-specific antigen (PSA) levels were also measured before and after the treatment. The effects of both EGCG and EGCG-P on tumor cell proliferation were assessed by immunohistochemical (IHC) method using antibodies against Ki-67 and proliferating cell nuclear antigen. The apoptotic effect was evaluated by IHC against B-cell non-Hodgkin lymphoma-2 and terminal deoxynucleotidyl transferase dUTP nick-end labeling assay by in situ apoptosis detection kit. Moreover, the potential suppression of angiogenesis by EGCG and EGCG-P on prostate cancer was examined by IHC against CD31. Our results revealed that treatment of EGCG and EGCG-P compounds suppressed the growth of CWR22R xenografts without causing any detectable side effects in nude mice. The suppression of growth of the tumor was correlated with the decrease of serum PSA level together with the reduction in tumor angiogenesis and an increase in apoptosis on prostate cancer cells. The results showed that treatment of EGCG and EGCG-P inhibited tumor growth and angiogenesis while promoting apoptosis of the prostate cancer cells in vivo. Our results suggest that EGCG-P may be a more stable and useful compound for increasing the therapeutic anticancer effects in androgen-independent prostate cancer.
URI: http://hdl.handle.net/10397/19906
ISSN: 0163-5581
EISSN: 1532-7914
DOI: 10.1080/01635580801947674
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

40
Citations as of Nov 16, 2017

WEB OF SCIENCETM
Citations

34
Last Week
0
Last month
0
Citations as of Nov 15, 2017

Page view(s)

53
Last Week
0
Last month
Checked on Nov 19, 2017

Google ScholarTM

Check

Altmetric



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.