Please use this identifier to cite or link to this item:
Title: Experimental investigation on the heat transfer of an impinging inverse diffusion flame
Authors: Ng, TK
Leung, CW 
Cheung, CS 
Issue Date: 2007
Publisher: Pergamon Press
Source: International journal of heat and mass transfer, 2007, v. 50, no. 17-18, p. 3366-3375 How to cite?
Journal: International journal of heat and mass transfer 
Abstract: This paper presents the results of an experimental study on the heat transfer characteristics of an inverse diffusion flame (IDF) impinging vertically upwards on a horizontal copper plate. The IDF burner used in the experiment has a central air jet surrounded circumferentially by 12 outer fuel jets. The heat flux at the stagnation point and the radial distribution of heat flux were measured with a heat flux sensor. The effects of Reynolds number, overall equivalence ratio, and nozzle-to-plate distance on the heat flux were investigated. The area-averaged heat flux and the heat transfer efficiency were calculated from the radial heat flux within a radial distance of 50 mm from the stagnation point of the flame, for air jet Reynolds number (Reair) of 2000, 2500 and 3000, for overall equivalence ratios (Φ) of 0.8-1.8, at normalized nozzle-to-plate distances (H/dIDF) between 4 and 10. Similar experiments were carried out on a circular premixed impinging flame for comparison. It was found that, for the impinging IDF, for Φ of 1.2 or higher, the area-averaged heat flux increased as the Reair or Φ was increased while the heat transfer efficiency decreased when these two parameters increased. Thus for the IDF, the maximum heat transfer efficiency occurred at Reair = 2000 and Φ = 1.2. At lower Φ, the heat transfer efficiency could increase when Φ was decreased. For the range of H/dIDF investigated, there was certain variation in the heat transfer efficiency with H/dIDF. The heat transfer efficiency of the premixed flame has a peak value at Φ = 1.0 at H/dP = 2 and decreases at higher Φ and higher H/dP. The IDF could have comparable or even higher heat transfer efficiency than a premixed flame.
ISSN: 0017-9310
EISSN: 1879-2189
DOI: 10.1016/j.ijheatmasstransfer.2007.01.046
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record


Last Week
Last month
Citations as of Aug 11, 2018


Last Week
Last month
Citations as of Aug 17, 2018

Page view(s)

Last Week
Last month
Citations as of Aug 13, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.