Please use this identifier to cite or link to this item:
Title: GOASVM : a subcellular location predictor by incorporating term-frequency gene ontology into the general form of Chou's pseudo-amino acid composition
Authors: Wan, S
Mak, MW 
Kung, SY
Issue Date: 2013
Source: Journal of theoretical biology, 2013, v. 323, p. 40-48
Abstract: Prediction of protein subcellular localization is an important yet challenging problem. Recently, several computational methods based on Gene Ontology (GO) have been proposed to tackle this problem and have demonstrated superiority over methods based on other features. Existing GO-based methods, however, do not fully use the GO information. This paper proposes an efficient GO method called GOASVM that exploits the information from the GO term frequencies and distant homologs to represent a protein in the general form of Chou's pseudo-amino acid composition. The method first selects a subset of relevant GO terms to form a GO vector space. Then for each protein, the method uses the accession number (AC) of the protein or the ACs of its homologs to find the number of occurrences of the selected GO terms in the Gene Ontology annotation (GOA) database as a means to construct GO vectors for support vector machines (SVMs) classification. With the advantages of GO term frequencies and a new strategy to incorporate useful homologous information, GOASVM can achieve a prediction accuracy of 72.2% on a new independent test set comprising novel proteins that were added to Swiss-Prot six years later than the creation date of the training set. GOASVM and Supplementary materials are available online at
Keywords: Gene ontology
GO terms
Protein subcellular localization
Support vector machines
Term frequency
Publisher: Academic Press Ltd Elsevier Science Ltd
Journal: Journal of Theoretical Biology 
ISSN: 0022-5193
DOI: 10.1016/j.jtbi.2013.01.012
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record


Last Week
Last month
Citations as of Sep 4, 2020


Last Week
Last month
Citations as of Sep 11, 2020

Page view(s)

Last Week
Last month
Citations as of Sep 16, 2020

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.