Please use this identifier to cite or link to this item:
Title: Optimizing the vehicle routing problem with time windows : a discrete particle swarm optimization approach
Authors: Gong, YJ
Zhang, J
Liu, O 
Huang, RZ
Chung, HSH
Shi, YH
Keywords: Combinatorial optimization problems (COPs)
set-based particle swarm optimization (S-PSO)
vehicle routing problem with time windows (VRPTW)
Issue Date: 2012
Publisher: Institute of Electrical and Electronics Engineers
Source: IEEE transactions on systems, man, and cybernetics. Part C, Applications and reviews, 2012, v. 42, no. 2, 5773510, p. 254-267 How to cite?
Journal: IEEE transactions on systems, man, and cybernetics. Part C, Applications and reviews 
Abstract: Vehicle routing problem with time windows (VRPTW) is a well-known NP-hard combinatorial optimization problem that is crucial for transportation and logistics systems. Even though the particle swarm optimization (PSO) algorithm is originally designed to solve continuous optimization problems, in this paper, we propose a set-based PSO to solve the discrete combinatorial optimization problem VRPTW (S-PSO-VRPTW). The general method of the S-PSO-VRPTW is to select an optimal subset out of the universal set by the use of the PSO framework. As the VRPTW can be defined as selecting an optimal subgraph out of the complete graph, the problem can be naturally solved by the proposed algorithm. The proposed S-PSO-VRPTW treats the discrete search space as an arc set of the complete graph that is defined by the nodes in the VRPTW and regards the candidate solution as a subset of arcs. Accordingly, the operators in the algorithm are defined on the set instead of the arithmetic operators in the original PSO algorithm. Besides, the process of position updating in the algorithm is constructive, during which the constraints of the VRPTW are considered and a time-oriented, nearest neighbor heuristic is used. A normalization method is introduced to handle the primary and secondary objectives of the VRPTW. The proposed S-PSO-VRPTW is tested on Solomons benchmarks. Simulation results and comparisons illustrate the effectiveness and efficiency of the algorithm.
ISSN: 1094-6977
DOI: 10.1109/TSMCC.2011.2148712
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record


Last Week
Last month
Citations as of Nov 3, 2018


Last Week
Last month
Citations as of Nov 12, 2018

Page view(s)

Last Week
Last month
Citations as of Nov 11, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.