Please use this identifier to cite or link to this item:
Title: Comparison of three global optimization algorithms for calibration of the Xinanjiang model parameters
Authors: Xu, DM
Wang, WC
Chau, KW 
Cheng, CT
Chen, SY
Issue Date: 2013
Source: Journal of hydroinformatics, 2013, v. 15, no. 1, p. 174-193
Abstract: The Xinanjiang model, a conceptual rainfall-runoff (CRR) model with distributed parameters, has been successfully and widely applied to flood forecasting of large basins in humid and semi-humid regions of China. With an increasing demand for timely and accurate forecasts in hydrology, how to obtain more appropriate parameters for CRR models has long been an important topic. These models have a large number of parameters which cannot be directly obtained from measurable quantities of catchments characteristics. In this study, three different optimization methods are used to calibrate the Xinanjiang streamflow model: genetic algorithm (GA), shuffled complex evolution of the University of Arizona (SCE-UA) and the recently developed shuffled complex evolution Metropolis algorithm of the University of Arizona (SCEM-UA), using streamflow data of the Shuangpai Reservoir in China. Two different time steps of 1 and 3 hr are used in the analysis. The results indicate that the SCEM-UA algorithm can infer the most probable parameter set and furnish useful information about the nature of the response surface in the vicinity of the optimum. Moreover, there is larger uncertainty for 1 hr forecasting than for 3 hr forecasting. This is significant in assessing risks in likely applications of Xinanjiang models.
Keywords: Genetic algorithm
Global optimization methods
Metropolis algorithm
Shuffled complex evolution
Time step
Xinanjiang model calibration
Publisher: International Water Association Publishing
Journal: Journal of hydroinformatics 
ISSN: 1464-7141
DOI: 10.2166/hydro.2012.053
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record


Last Week
Last month
Citations as of Sep 8, 2020


Last Week
Last month
Citations as of Sep 18, 2020

Page view(s)

Last Week
Last month
Citations as of Sep 14, 2020

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.