Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/17401
Title: Computer simulation of progressive retinal nerve fiber layer loss in glaucoma : performance of event and trend analyses
Authors: Yu, M
Weinreb, RN
Yiu, C 
Liu, S
Or, MK
Ye, C
Lam, DSC
Leung, CKS
Issue Date: 2011
Publisher: Association for Research in Vision and Ophthalmology
Source: Investigative ophthalmology and visual science, 2011, v. 52, no. 13, p. 9674-9683 How to cite?
Journal: Investigative ophthalmology and visual science 
Abstract: Purpose. Although event analysis (EA) and trend analysis (TA) have been widely adopted to evaluate glaucoma progression in clinical trials, there is poor agreement between the strategies and no consensus on strategy selection in clinical practice. With computer simulation of progressive loss of the retinal nerve fiber layer (RNFL), the authors compared the performance of TA and EA for the detection of glaucoma progression. Methods. RNFL progression was modeled with reference to the individual's test-retest variability and the pattern and rate of progression. The sensitivity and specificity of each scenario were computed from 5000 simulated datasets. Simulation results were validated with longitudinal RNFL measurements obtained from 107 glaucoma and glaucoma suspect patients who had a median follow-up period of 38 months. Results. TA generally attained a sensitivity ≥80% earlier than EA, although EA with a group reproducibility coefficient had a higher sensitivity than TA for eyes with a large test-retest variability in the early follow-up period, albeit at a lower specificity. The specificity of TA was 95% and ranged between 80% and 100% for EA. Independent of test-retest variability and the pattern and rate of progression, TA had an accuracy ≥80% earlier than EA. In the longitudinal study, the detection rate was 42%, 35%, and 3% for TA, whereas it was 11% to 40%, 12% to 28%, and 3% to 23% for EA at 36 months of follow-up in eyes with small, average, and large test-retest variabilities, respectively. Conclusions. Although test-retest variability is an important determinant in progression analysis, TA generally outperformed EA for the detection of RNFL progression in glaucoma.
URI: http://hdl.handle.net/10397/17401
ISSN: 0146-0404
EISSN: 1552-5783
DOI: 10.1167/iovs.11-8052
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

5
Last Week
0
Last month
0
Citations as of Aug 14, 2017

WEB OF SCIENCETM
Citations

5
Last Week
0
Last month
0
Citations as of Aug 13, 2017

Page view(s)

34
Last Week
2
Last month
Checked on Aug 13, 2017

Google ScholarTM

Check

Altmetric



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.