Please use this identifier to cite or link to this item:
Title: Creep behavior of high-strength concrete with polypropylene fibers at elevated temperatures
Authors: Wu, B
Lam, ESS 
Liu, Q
Chung, WYM
Keywords: Creep
High-performance concrete
Polypropylene fibers
Issue Date: 2010
Publisher: American Concrete Institute
Source: Materials journal, 2010, v. 107, no. 2, p. 176-184 How to cite?
Journal: Materials Journal 
Abstract: Experimental studies have been conducted to examine the creep behavior of high-strength concrete (HSC) with polypropylene (PP) fibers of 2 kg/m3 (0.125 lb/ft3) when exposed to elevated temperature. Various types of heating and loading schemes are considered, including transient temperature and stepwise loading paths. Tests are carried out at temperatures up to 700°C (1292°F) and a stress ratio up to 0.6. HSC with PP fibers performs better than normalstrength concrete (NSC) at temperatures below 500°C (932°F) and shows an obvious increase in creep behavior at 700°C (1292°F). At the same stress ratio and duration of 120 minutes, the creep strain developed at 700°C (1292°F) was approximately 10 times more than that developed at 500°C (932°F). There was no abrupt change in creep behavior at or approximately 2200°C (428°F) when the PP fibers evaporated. It is likely that the markedly different response at 7000°C (1292°F) was related to the change in the microstructure of HSC at high temperatures. Increasing the stress ratio at constant temperature will lead to an abrupt increase in creep strain rate. HSC with PP fibers showed a large transient creep strain, and this phenomenon becomes obvious at higher temperatures. Finally, fitting equations are proposed to represent the creep behavior of HSC with PP fibers.
DOI: 10.14359/51663581
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record

Page view(s)

Last Week
Last month
Citations as of Aug 19, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.