Please use this identifier to cite or link to this item:
Title: Crystallographic homogenization finite element method and its application on simulation of evolution of plastic deformation induced texture
Authors: Chen, Y
Lee, WB 
Nakamachi, E
Issue Date: 2010
Source: Acta mechanica solida sinica, 2010, v. 23, no. 1, p. 36-48
Abstract: A crystallographic homogenization method is proposed and implemented to predict the evolution of plastic deformation induced texture and plastic anisotropy (earring) in the stamping of polycrystalline sheet metals. The microscopic inhomogeneity of crystal aggregate has been taken into account with the microstructure made up of a representative aggregate of single crystal grains. Multi-scale analysis is performed by coupling the microscopic crystal plasticity with the macroscopic continuum response through the present homogenization procedure. The macroscopic stress is defined as the volume average of the corresponding microscopic crystal aggregations, which simultaneously satisfies the equation of motion in both micro- and macro-states. The proposed numerical implementation is based on a finite element discretization of the macro-continuum, which is locally coupled at each Gaussian point with a finite element discretization of the attached micro-structure. The solution strategy for the macro-continuum and the pointwise-attached micro-structure is implemented by the simultaneous employment of dynamic explicit FE formulation. The rate-dependent crystal plasticity model is used for the constitutive description of the constituent single crystal grains. It has been confirmed that Taylor's constant strain homogenization assumption yields an undue concentration of the preferred crystal orientation compared with the present homogenization in the prediction of texture evolution, with the latter having relaxed the constraints on the crystal grains. Two kinds of numerical examples are presented to demonstrate the capability of the developed code: 1) The texture evolution of three representative deformation modes, and 2) Plastic anisotropy (earring) prediction in the hemispherical cup deep drawing process of aluminum alloy A5052 with initial texture. By comparison of simulation results with those obtained employing direct crystal plasticity calculation adopting Taylor assumption, conclusions are drawn that the proposed dynamic explicit crystallographic homogenization FEM is able to more accurately predict the plastic deformation induced texture evolution and plastic anisotropy in the deep drawing process.
Keywords: crystal plasticity
Publisher: Huazhong University of Science and Technology
Journal: Acta mechanica solida Sinica 
ISSN: 0894-9166
EISSN: 1860-2134
DOI: 10.1016/S0894-9166(10)60005-5
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record


Last Week
Last month
Citations as of Aug 28, 2020


Last Week
Last month
Citations as of Sep 18, 2020

Page view(s)

Last Week
Last month
Citations as of Sep 14, 2020

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.